SmolFactory / model.py
Tonic's picture
only enable distributed process group if available - it's not
5e4741a verified
raw
history blame
7.81 kB
"""
SmolLM3 Model Wrapper
Handles model loading, tokenizer, and training setup
"""
import os
import torch
import torch.nn as nn
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoConfig,
TrainingArguments,
Trainer
)
from typing import Optional, Dict, Any
import logging
logger = logging.getLogger(__name__)
class SmolLM3Model:
"""Wrapper for SmolLM3 model and tokenizer"""
def __init__(
self,
model_name: str = "HuggingFaceTB/SmolLM3-3B",
max_seq_length: int = 4096,
config: Optional[Any] = None,
device_map: Optional[str] = None,
torch_dtype: Optional[torch.dtype] = None
):
self.model_name = model_name
self.max_seq_length = max_seq_length
self.config = config
# Set device and dtype
if torch_dtype is None:
if torch.cuda.is_available():
self.torch_dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
else:
self.torch_dtype = torch.float32
else:
self.torch_dtype = torch_dtype
if device_map is None:
self.device_map = "auto" if torch.cuda.is_available() else "cpu"
else:
self.device_map = device_map
# Load tokenizer and model
self._load_tokenizer()
self._load_model()
def _load_tokenizer(self):
"""Load the tokenizer"""
logger.info(f"Loading tokenizer from {self.model_name}")
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
use_fast=True
)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info(f"Tokenizer loaded successfully. Vocab size: {self.tokenizer.vocab_size}")
except Exception as e:
logger.error(f"Failed to load tokenizer: {e}")
raise
def _load_model(self):
"""Load the model"""
logger.info(f"Loading model from {self.model_name}")
try:
# Load model configuration
model_config = AutoConfig.from_pretrained(
self.model_name,
trust_remote_code=True
)
# Update configuration if needed
if hasattr(model_config, 'max_position_embeddings'):
model_config.max_position_embeddings = self.max_seq_length
# Load model
model_kwargs = {
"torch_dtype": self.torch_dtype,
"device_map": self.device_map,
"trust_remote_code": True
}
# Only add flash attention if the model supports it
if hasattr(self.config, 'use_flash_attention') and self.config.use_flash_attention:
try:
# Test if the model supports flash attention
test_config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
if hasattr(test_config, 'use_flash_attention_2'):
model_kwargs["use_flash_attention_2"] = True
except:
# If flash attention is not supported, skip it
pass
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
config=model_config,
**model_kwargs
)
# Enable gradient checkpointing if specified
if self.config and self.config.use_gradient_checkpointing:
self.model.gradient_checkpointing_enable()
logger.info(f"Model loaded successfully. Parameters: {self.model.num_parameters():,}")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
def get_training_arguments(self, output_dir: str, **kwargs) -> TrainingArguments:
"""Get training arguments for the Trainer"""
if self.config is None:
raise ValueError("Config is required to get training arguments")
# Merge config with kwargs
training_args = {
"output_dir": output_dir,
"per_device_train_batch_size": self.config.batch_size,
"per_device_eval_batch_size": self.config.batch_size,
"gradient_accumulation_steps": self.config.gradient_accumulation_steps,
"learning_rate": self.config.learning_rate,
"weight_decay": self.config.weight_decay,
"warmup_steps": self.config.warmup_steps,
"max_steps": self.config.max_iters,
"save_steps": self.config.save_steps,
"eval_steps": self.config.eval_steps,
"logging_steps": self.config.logging_steps,
"save_total_limit": self.config.save_total_limit,
"eval_strategy": self.config.eval_strategy,
"metric_for_best_model": self.config.metric_for_best_model,
"greater_is_better": self.config.greater_is_better,
"load_best_model_at_end": self.config.load_best_model_at_end,
"fp16": self.config.fp16,
"bf16": self.config.bf16,
# Only enable DDP if multiple GPUs are available
"ddp_backend": self.config.ddp_backend if torch.cuda.device_count() > 1 else None,
"ddp_find_unused_parameters": self.config.ddp_find_unused_parameters if torch.cuda.device_count() > 1 else False,
"report_to": "none", # Disable external logging
"remove_unused_columns": False,
"dataloader_pin_memory": False,
"group_by_length": True,
"length_column_name": "length",
"ignore_data_skip": False,
"seed": 42,
"data_seed": 42,
"dataloader_num_workers": 4,
"max_grad_norm": 1.0,
"optim": self.config.optimizer,
"lr_scheduler_type": self.config.scheduler,
"warmup_ratio": 0.1,
"save_strategy": "steps",
"logging_strategy": "steps",
"prediction_loss_only": True,
}
# Override with kwargs
training_args.update(kwargs)
return TrainingArguments(**training_args)
def save_pretrained(self, path: str):
"""Save model and tokenizer"""
logger.info(f"Saving model and tokenizer to {path}")
os.makedirs(path, exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
# Save configuration
if self.config:
import json
config_dict = {k: v for k, v in self.config.__dict__.items()
if not k.startswith('_')}
with open(os.path.join(path, 'training_config.json'), 'w') as f:
json.dump(config_dict, f, indent=2, default=str)
def load_checkpoint(self, checkpoint_path: str):
"""Load model from checkpoint"""
logger.info(f"Loading checkpoint from {checkpoint_path}")
try:
self.model = AutoModelForCausalLM.from_pretrained(
checkpoint_path,
torch_dtype=self.torch_dtype,
device_map=self.device_map,
trust_remote_code=True
)
logger.info("Checkpoint loaded successfully")
except Exception as e:
logger.error(f"Failed to load checkpoint: {e}")
raise