Spaces:
Running
Running
File size: 7,809 Bytes
d8dd7a1 07eab17 cb932c7 07eab17 d8dd7a1 07eab17 d8dd7a1 0c97eb6 d8dd7a1 5e4741a d8dd7a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
"""
SmolLM3 Model Wrapper
Handles model loading, tokenizer, and training setup
"""
import os
import torch
import torch.nn as nn
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoConfig,
TrainingArguments,
Trainer
)
from typing import Optional, Dict, Any
import logging
logger = logging.getLogger(__name__)
class SmolLM3Model:
"""Wrapper for SmolLM3 model and tokenizer"""
def __init__(
self,
model_name: str = "HuggingFaceTB/SmolLM3-3B",
max_seq_length: int = 4096,
config: Optional[Any] = None,
device_map: Optional[str] = None,
torch_dtype: Optional[torch.dtype] = None
):
self.model_name = model_name
self.max_seq_length = max_seq_length
self.config = config
# Set device and dtype
if torch_dtype is None:
if torch.cuda.is_available():
self.torch_dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
else:
self.torch_dtype = torch.float32
else:
self.torch_dtype = torch_dtype
if device_map is None:
self.device_map = "auto" if torch.cuda.is_available() else "cpu"
else:
self.device_map = device_map
# Load tokenizer and model
self._load_tokenizer()
self._load_model()
def _load_tokenizer(self):
"""Load the tokenizer"""
logger.info(f"Loading tokenizer from {self.model_name}")
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
use_fast=True
)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info(f"Tokenizer loaded successfully. Vocab size: {self.tokenizer.vocab_size}")
except Exception as e:
logger.error(f"Failed to load tokenizer: {e}")
raise
def _load_model(self):
"""Load the model"""
logger.info(f"Loading model from {self.model_name}")
try:
# Load model configuration
model_config = AutoConfig.from_pretrained(
self.model_name,
trust_remote_code=True
)
# Update configuration if needed
if hasattr(model_config, 'max_position_embeddings'):
model_config.max_position_embeddings = self.max_seq_length
# Load model
model_kwargs = {
"torch_dtype": self.torch_dtype,
"device_map": self.device_map,
"trust_remote_code": True
}
# Only add flash attention if the model supports it
if hasattr(self.config, 'use_flash_attention') and self.config.use_flash_attention:
try:
# Test if the model supports flash attention
test_config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
if hasattr(test_config, 'use_flash_attention_2'):
model_kwargs["use_flash_attention_2"] = True
except:
# If flash attention is not supported, skip it
pass
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
config=model_config,
**model_kwargs
)
# Enable gradient checkpointing if specified
if self.config and self.config.use_gradient_checkpointing:
self.model.gradient_checkpointing_enable()
logger.info(f"Model loaded successfully. Parameters: {self.model.num_parameters():,}")
except Exception as e:
logger.error(f"Failed to load model: {e}")
raise
def get_training_arguments(self, output_dir: str, **kwargs) -> TrainingArguments:
"""Get training arguments for the Trainer"""
if self.config is None:
raise ValueError("Config is required to get training arguments")
# Merge config with kwargs
training_args = {
"output_dir": output_dir,
"per_device_train_batch_size": self.config.batch_size,
"per_device_eval_batch_size": self.config.batch_size,
"gradient_accumulation_steps": self.config.gradient_accumulation_steps,
"learning_rate": self.config.learning_rate,
"weight_decay": self.config.weight_decay,
"warmup_steps": self.config.warmup_steps,
"max_steps": self.config.max_iters,
"save_steps": self.config.save_steps,
"eval_steps": self.config.eval_steps,
"logging_steps": self.config.logging_steps,
"save_total_limit": self.config.save_total_limit,
"eval_strategy": self.config.eval_strategy,
"metric_for_best_model": self.config.metric_for_best_model,
"greater_is_better": self.config.greater_is_better,
"load_best_model_at_end": self.config.load_best_model_at_end,
"fp16": self.config.fp16,
"bf16": self.config.bf16,
# Only enable DDP if multiple GPUs are available
"ddp_backend": self.config.ddp_backend if torch.cuda.device_count() > 1 else None,
"ddp_find_unused_parameters": self.config.ddp_find_unused_parameters if torch.cuda.device_count() > 1 else False,
"report_to": "none", # Disable external logging
"remove_unused_columns": False,
"dataloader_pin_memory": False,
"group_by_length": True,
"length_column_name": "length",
"ignore_data_skip": False,
"seed": 42,
"data_seed": 42,
"dataloader_num_workers": 4,
"max_grad_norm": 1.0,
"optim": self.config.optimizer,
"lr_scheduler_type": self.config.scheduler,
"warmup_ratio": 0.1,
"save_strategy": "steps",
"logging_strategy": "steps",
"prediction_loss_only": True,
}
# Override with kwargs
training_args.update(kwargs)
return TrainingArguments(**training_args)
def save_pretrained(self, path: str):
"""Save model and tokenizer"""
logger.info(f"Saving model and tokenizer to {path}")
os.makedirs(path, exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
# Save configuration
if self.config:
import json
config_dict = {k: v for k, v in self.config.__dict__.items()
if not k.startswith('_')}
with open(os.path.join(path, 'training_config.json'), 'w') as f:
json.dump(config_dict, f, indent=2, default=str)
def load_checkpoint(self, checkpoint_path: str):
"""Load model from checkpoint"""
logger.info(f"Loading checkpoint from {checkpoint_path}")
try:
self.model = AutoModelForCausalLM.from_pretrained(
checkpoint_path,
torch_dtype=self.torch_dtype,
device_map=self.device_map,
trust_remote_code=True
)
logger.info("Checkpoint loaded successfully")
except Exception as e:
logger.error(f"Failed to load checkpoint: {e}")
raise |