Spaces:
Running
Running
#!/usr/bin/env python3 | |
""" | |
Quick Model Deployment Script | |
Direct deployment without argument parsing issues | |
""" | |
import os | |
import sys | |
import logging | |
from pathlib import Path | |
# Add src to path for imports | |
sys.path.append(os.path.join(os.path.dirname(__file__), 'src')) | |
# Setup logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
def main(): | |
"""Direct deployment without argument parsing""" | |
# Configuration | |
MODEL_PATH = "/output-checkpoint" | |
REPO_NAME = "Tonic/smollm3-finetuned" | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
if not HF_TOKEN: | |
logger.error("β HF_TOKEN not set") | |
return 1 | |
if not Path(MODEL_PATH).exists(): | |
logger.error(f"β Model path not found: {MODEL_PATH}") | |
return 1 | |
logger.info("β Model files validated") | |
# Import and run the recovery pipeline directly | |
try: | |
from recover_model import ModelRecoveryPipeline | |
# Initialize pipeline | |
pipeline = ModelRecoveryPipeline( | |
model_path=MODEL_PATH, | |
repo_name=REPO_NAME, | |
hf_token=HF_TOKEN, | |
private=False, | |
quantize=True, | |
quant_types=["int8_weight_only", "int4_weight_only"], | |
author_name="Tonic", | |
model_description="A fine-tuned SmolLM3 model for improved text generation and conversation capabilities" | |
) | |
# Run the complete pipeline | |
success = pipeline.run_complete_pipeline() | |
if success: | |
logger.info("β Model deployment completed successfully!") | |
logger.info(f"π View your model at: https://huggingface.co/{REPO_NAME}") | |
return 0 | |
else: | |
logger.error("β Model deployment failed!") | |
return 1 | |
except Exception as e: | |
logger.error(f"β Error during deployment: {e}") | |
return 1 | |
if __name__ == "__main__": | |
exit(main()) |