Spaces:
Running
Running
File size: 2,034 Bytes
22bb04c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
#!/usr/bin/env python3
"""
Quick Model Deployment Script
Direct deployment without argument parsing issues
"""
import os
import sys
import logging
from pathlib import Path
# Add src to path for imports
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def main():
"""Direct deployment without argument parsing"""
# Configuration
MODEL_PATH = "/output-checkpoint"
REPO_NAME = "Tonic/smollm3-finetuned"
HF_TOKEN = os.getenv('HF_TOKEN')
if not HF_TOKEN:
logger.error("β HF_TOKEN not set")
return 1
if not Path(MODEL_PATH).exists():
logger.error(f"β Model path not found: {MODEL_PATH}")
return 1
logger.info("β
Model files validated")
# Import and run the recovery pipeline directly
try:
from recover_model import ModelRecoveryPipeline
# Initialize pipeline
pipeline = ModelRecoveryPipeline(
model_path=MODEL_PATH,
repo_name=REPO_NAME,
hf_token=HF_TOKEN,
private=False,
quantize=True,
quant_types=["int8_weight_only", "int4_weight_only"],
author_name="Tonic",
model_description="A fine-tuned SmolLM3 model for improved text generation and conversation capabilities"
)
# Run the complete pipeline
success = pipeline.run_complete_pipeline()
if success:
logger.info("β
Model deployment completed successfully!")
logger.info(f"π View your model at: https://huggingface.co/{REPO_NAME}")
return 0
else:
logger.error("β Model deployment failed!")
return 1
except Exception as e:
logger.error(f"β Error during deployment: {e}")
return 1
if __name__ == "__main__":
exit(main()) |