SmolFactory / docs /MONITORING_IMPROVEMENTS_SUMMARY.md
Tonic's picture
adds formatting fix
ebe598e verified
|
raw
history blame
6.62 kB

πŸš€ Monitoring Improvements Summary

Overview

The monitoring system has been significantly enhanced to support Hugging Face Datasets for persistent experiment storage, making it ideal for deployment on Hugging Face Spaces and other cloud environments.

βœ… Key Improvements Made

1. Enhanced monitoring.py

  • βœ… HF Datasets Integration: Added support for saving experiments to HF Datasets repositories
  • βœ… Environment Variables: Automatic detection of HF_TOKEN and TRACKIO_DATASET_REPO
  • βœ… Fallback Support: Graceful degradation if HF Datasets unavailable
  • βœ… Dual Storage: Experiments saved to both Trackio and HF Datasets
  • βœ… Periodic Saving: Metrics saved to HF Dataset every 10 steps
  • βœ… Error Handling: Robust error logging and recovery

2. Updated train.py

  • βœ… Monitoring Integration: Automatic monitoring setup in training scripts
  • βœ… Configuration Logging: Experiment configuration logged at start
  • βœ… Training Callbacks: Monitoring callbacks added to trainer
  • βœ… Summary Logging: Training summaries logged at completion
  • βœ… Error Logging: Errors logged to monitoring system
  • βœ… Cleanup: Proper monitoring session cleanup

3. Configuration Files Updated

  • βœ… HF Datasets Config: Added hf_token and dataset_repo parameters
  • βœ… Environment Support: Environment variables automatically detected
  • βœ… Backward Compatible: Existing configurations still work

4. New Utility Scripts

  • βœ… configure_trackio.py: Configuration testing and setup
  • βœ… integrate_monitoring.py: Automated integration script
  • βœ… test_monitoring_integration.py: Comprehensive testing
  • βœ… setup_hf_dataset.py: Dataset repository setup

5. Documentation

  • βœ… MONITORING_INTEGRATION_GUIDE.md: Comprehensive usage guide
  • βœ… ENVIRONMENT_VARIABLES.md: Environment variable reference
  • βœ… HF_DATASETS_GUIDE.md: Detailed HF Datasets guide

πŸ”§ Environment Variables

Variable Required Default Description
HF_TOKEN βœ… Yes None Your Hugging Face token
TRACKIO_DATASET_REPO ❌ No tonic/trackio-experiments Dataset repository
TRACKIO_URL ❌ No None Trackio server URL
TRACKIO_TOKEN ❌ No None Trackio authentication token

πŸ“Š What Gets Monitored

Training Metrics

  • Loss values (training and validation)
  • Learning rate
  • Gradient norms
  • Training steps and epochs

System Metrics

  • GPU memory usage
  • GPU utilization
  • CPU usage
  • Memory usage

Experiment Data

  • Configuration parameters
  • Model checkpoints
  • Evaluation results
  • Training summaries

Artifacts

  • Configuration files
  • Training logs
  • Evaluation results
  • Model checkpoints

πŸš€ Usage Examples

Basic Training

# Set environment variables
export HF_TOKEN=your_token_here
export TRACKIO_DATASET_REPO=your-username/experiments

# Run training with monitoring
python train.py config/train_smollm3_openhermes_fr.py

Advanced Configuration

# Train with custom settings
python train.py config/train_smollm3_openhermes_fr.py \
  --experiment_name "smollm3_french_v2" \
  --hf_token your_token_here \
  --dataset_repo your-username/french-experiments

Testing Setup

# Test configuration
python configure_trackio.py

# Test monitoring integration
python test_monitoring_integration.py

# Test dataset access
python test_hf_datasets.py

πŸ“ˆ Benefits

For HF Spaces Deployment

  • βœ… Persistent Storage: Data survives Space restarts
  • βœ… No Local Storage: No dependency on ephemeral storage
  • βœ… Scalable: Works with any dataset size
  • βœ… Secure: Private dataset storage

For Experiment Management

  • βœ… Centralized: All experiments in one place
  • βœ… Searchable: Easy to find specific experiments
  • βœ… Versioned: Dataset versioning for experiments
  • βœ… Collaborative: Share experiments with team

For Development

  • βœ… Flexible: Easy to switch between datasets
  • βœ… Configurable: Environment-based configuration
  • βœ… Robust: Fallback mechanisms
  • βœ… Debuggable: Comprehensive logging

πŸ§ͺ Testing Results

All monitoring integration tests passed:

  • βœ… Module Import
  • βœ… Monitor Creation
  • βœ… Config Creation
  • βœ… Metrics Logging
  • βœ… Configuration Logging
  • βœ… System Metrics
  • βœ… Training Summary
  • βœ… Callback Creation

πŸ“‹ Files Modified/Created

Core Files

  • monitoring.py - Enhanced with HF Datasets support
  • train.py - Updated with monitoring integration
  • requirements_core.txt - Added monitoring dependencies
  • requirements_space.txt - Updated for HF Spaces

Configuration Files

  • config/train_smollm3.py - Added HF Datasets config
  • config/train_smollm3_openhermes_fr.py - Added HF Datasets config
  • config/train_smollm3_openhermes_fr_a100_balanced.py - Added HF Datasets config
  • config/train_smollm3_openhermes_fr_a100_large.py - Added HF Datasets config
  • config/train_smollm3_openhermes_fr_a100_max_performance.py - Added HF Datasets config
  • config/train_smollm3_openhermes_fr_a100_multiple_passes.py - Added HF Datasets config

New Utility Scripts

  • configure_trackio.py - Configuration testing
  • integrate_monitoring.py - Automated integration
  • test_monitoring_integration.py - Comprehensive testing
  • setup_hf_dataset.py - Dataset setup

Documentation

  • MONITORING_INTEGRATION_GUIDE.md - Usage guide
  • ENVIRONMENT_VARIABLES.md - Environment reference
  • HF_DATASETS_GUIDE.md - HF Datasets guide
  • MONITORING_IMPROVEMENTS_SUMMARY.md - This summary

🎯 Next Steps

  1. Set up your HF token and dataset repository
  2. Test the configuration with python configure_trackio.py
  3. Run a training experiment to verify full functionality
  4. Check your HF Dataset repository for experiment data
  5. View results in your Trackio interface

πŸ” Troubleshooting

Common Issues

  • HF_TOKEN not set: Set your Hugging Face token
  • Dataset access failed: Check token permissions and repository existence
  • Monitoring not working: Run python test_monitoring_integration.py to diagnose

Getting Help

  • Check the comprehensive guides in the documentation files
  • Run the test scripts to verify your setup
  • Check logs for specific error messages

πŸŽ‰ The monitoring system is now ready for production use with persistent HF Datasets storage!