Spaces:
Running
Running
File size: 12,013 Bytes
93d0081 7aa5e49 93d0081 68b0972 93d0081 ce0d824 78a7472 ce0d824 3c37508 d8dd7a1 fcf2981 d8dd7a1 26641fd a8275b3 3c37508 d8dd7a1 a8275b3 3c37508 fcf2981 3c37508 fcf2981 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 fcf2981 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 a552387 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 d8dd7a1 3c37508 5fe83da 3c37508 5fe83da 3c37508 7aa5e49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
---
title: SmolFactory
emoji: π
colorFrom: blue
colorTo: pink
sdk: gradio
sdk_version: 5.42.0
app_file: interface.py
pinned: false
short_description: SmolFactory is a e2e model maker
---
<p align="center">
π€ <a href="https://hf.co/spaces/Tonic/smolfactory">Hugging Face</a>   |   π€ <a href="https://huggingface.co/spaces/Tonic/Petite-LLM-3">demo</a>   |    π <a href="https://huggingface.co/blog/Tonic/SmolFactory">Blog</a>    ο½   π₯οΈ <a href="https://huggingface.co/Tonic/petite-elle-L-aime-3-sft">Model</a>
<br>
<a href="https://huggingface.co/spaces/Tonic/Track-Tonic">Monitoring</a>   |   
<a href="https://discord.gg/qdfnvSPcqP">
<img src="https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square" alt="Join us on Discord">
</a>   ο½   <a href="https://huggingface.co/datasets/Tonic/trackio-experiments">Dataset</a>
</p>
# π€π»πSmolFactory
SmolFactory helps you train, monitor and deploy your SmolLM3 and GPT-OSS fine-tunes, and more!
<table>
<tr>
<td>
<img width="100%" src="https://github.com/user-attachments/assets/42d5df5f-acaa-40dc-ac4a-34153b5c9675" alt="Screenshot 1" />
</td>
<td>
<img width="100%" src="https://github.com/user-attachments/assets/ed3c99b3-1335-4ebd-807e-25db795e751b" alt="Screenshot 2" />
</td>
<td>
<img width="100%" src="https://github.com/user-attachments/assets/c557500a-1a08-4efa-9b17-1afe1101d71a" alt="Screenshot 3" />
</td>
</tr>
</table>
Train and deploy your model with one simple command !
## π€ Automatically Push Model, Spaces, Datasets & Monitoring
- **Automatic Deployment**: Spaces created and configured automatically during the pipeline
- **Trackio Monitoring Space**: Real-time training metrics, loss curves, and resource utilization
- **Demo Spaces**: Instant web interfaces for model testing and demonstration
- **Real-time Metrics**: Live training loss, learning rate, gradient norms, and GPU utilization
- **Custom Dashboards**: Tailored visualizations for SmolLM3 and GPT-OSS fine-tuning
- **Artifact Logging**: Model checkpoints, configuration files, and training logs
- **Experiment Comparison**: Side-by-side analysis of different training runs
- **Alert System**: Notifications for training issues or completion
- **Integration**: Seamless connection with HF Spaces for public monitoring
- **Experiment Tracking**: All training data, metrics, and artifacts stored in HF Datasets
- **Reproducibility**: Complete experiment history with configuration snapshots
- **Collaboration**: Easy sharing of training results and model comparisons
- **Version Control**: Track dataset changes and model performance over time
- **GPT-OSS Support**: Specialized configurations for OpenAI's GPT-OSS-20B model with LoRA and multilingual reasoning
## π Quick Start
### Interactive Pipeline (Recommended)
The easiest way to get started is using the interactive pipeline:
```bash
./launch.sh
```
This script will:
1. **Authenticate** with Hugging Face (write + read tokens)
2. **Configure** training parameters interactively (SmolLM3 or GPT-OSS)
3. **Deploy** Trackio Space for monitoring
4. **Setup** HF Dataset for experiment tracking
5. **Execute** training with your chosen configuration
6. **Push** model to HF Hub with comprehensive documentation
7. **Deploy** demo space for testing (optional)
### Manual Setup
For advanced users who want to customize the pipeline:
```bash
# 1. Install dependencies
pip install -r requirements/requirements_core.txt
# 2. Configure your training
python scripts/training/train.py \
--config config/train_smollm3_h100_lightweight.py \
--experiment-name "my-experiment" \
--output-dir ./outputs \
--trackio-url "https://huggingface.co/spaces/username/trackio-monitoring"
# 3. Push model to HF Hub
python scripts/model_tonic/push_to_huggingface.py \
./outputs username/model-name \
--token YOUR_HF_TOKEN
```
## ποΈ Repository Architecture
```mermaid
graph LR
Entry_Point["Entry Point"]
Configuration_Management["Configuration Management"]
Data_Pipeline["Data Pipeline"]
Model_Abstraction["Model Abstraction"]
Training_Orchestrator["Training Orchestrator"]
Entry_Point -- "Initializes and Uses" --> Configuration_Management
Entry_Point -- "Initializes" --> Data_Pipeline
Entry_Point -- "Initializes" --> Model_Abstraction
Entry_Point -- "Initializes and Invokes" --> Training_Orchestrator
Configuration_Management -- "Provides Configuration To" --> Model_Abstraction
Configuration_Management -- "Provides Configuration To" --> Data_Pipeline
Configuration_Management -- "Provides Configuration To" --> Training_Orchestrator
Data_Pipeline -- "Provides Data To" --> Training_Orchestrator
Model_Abstraction -- "Provides Model To" --> Training_Orchestrator
click Entry_Point href "https://github.com/Josephrp/SmolFactory/blob/main/docs/Entry_Point.md" "Details"
click Configuration_Management href "https://github.com/Josephrp/SmolFactory/blob/main/docs/Configuration_Management.md" "Details"
click Data_Pipeline href "https://github.com/Josephrp/SmolFactory/blob/main/docs/Data_Pipeline.md" "Details"
click Model_Abstraction href "https://github.com/Josephrp/SmolFactory/blob/main/docs/Model_Abstraction.md" "Details"
click Training_Orchestrator href "https://github.com/Josephrp/SmolFactory/blob/main/docs/Training_Orchestrator.md" "Details"
```
## π§ Core Components
### Configuration System (`config/`)
All training configurations inherit from `SmolLM3Config`:
```python
# config/my_config.py
from config.train_smollm3 import SmolLM3Config
config = SmolLM3Config(
model_name="HuggingFaceTB/SmolLM3-3B",
max_seq_length=8192,
batch_size=8,
learning_rate=5e-6,
trainer_type="sft", # or "dpo"
enable_tracking=True,
trackio_url="https://huggingface.co/spaces/username/trackio-monitoring"
)
```
### Dataset Processing (`src/data.py`)
The `SmolLM3Dataset` class handles multiple dataset formats:
```python
from src.data import SmolLM3Dataset
# Supports multiple formats:
# 1. Chat format (recommended)
# 2. Instruction format
# 3. User-Assistant format
# 4. Hugging Face datasets
dataset = SmolLM3Dataset(
data_path="my_dataset",
tokenizer=tokenizer,
max_seq_length=4096,
use_chat_template=True,
sample_size=80000 # For lightweight training
)
```
### Training Orchestration (`src/train.py`)
The main training script coordinates all components:
```python
from src.train import main
from src.model import SmolLM3Model
from src.trainer import SmolLM3Trainer, SmolLM3DPOTrainer
# SFT Training
trainer = SmolLM3Trainer(
model=model,
dataset=dataset,
config=config,
output_dir="./outputs"
)
# DPO Training
dpo_trainer = SmolLM3DPOTrainer(
model=model,
dataset=dataset,
config=config,
output_dir="./dpo-outputs"
)
```
## π― Training Types
### Supervised Fine-tuning (SFT)
Standard instruction tuning for improving model capabilities:
```bash
python scripts/training/train.py \
--config config/train_smollm3.py \
--trainer-type sft \
--experiment-name "sft-experiment"
```
### Direct Preference Optimization (DPO)
Preference-based training for alignment:
```bash
python scripts/training/train.py \
--config config/train_smollm3_dpo.py \
--trainer-type dpo \
--experiment-name "dpo-experiment"
```
## π Monitoring & Tracking
### Trackio Integration
The pipeline includes comprehensive monitoring:
```python
from src.monitoring import create_monitor_from_config
monitor = create_monitor_from_config(config)
monitor.log_metrics({
"train_loss": loss,
"learning_rate": lr,
"gradient_norm": grad_norm
})
```
### HF Dataset Integration
Experiment data is automatically saved to HF Datasets:
```python
# Automatically configured in launch.sh
dataset_repo = "username/trackio-experiments"
```
## π Model Management
### Pushing to HF Hub
```bash
python scripts/model_tonic/push_to_huggingface.py \
./outputs username/model-name \
--token YOUR_HF_TOKEN \
--trackio-url "https://huggingface.co/spaces/username/trackio-monitoring" \
--experiment-name "my-experiment"
```
### Model Quantization
Create optimized versions for deployment:
```bash
# Quantize and push to HF Hub
python scripts/model_tonic/quantize_standalone.py \
./outputs username/model-name \
--quant-type int8_weight_only \
--token YOUR_HF_TOKEN
# Quantize for CPU deployment
python scripts/model_tonic/quantize_standalone.py \
./outputs username/model-name \
--quant-type int4_weight_only \
--device cpu \
--save-only
```
## π οΈ Customization Guide
### Adding New Training Configurations
1. Create a new config file in `config/`:
```python
# config/train_smollm3_custom.py
from config.train_smollm3 import SmolLM3Config
config = SmolLM3Config(
model_name="HuggingFaceTB/SmolLM3-3B-Instruct",
max_seq_length=16384,
batch_size=4,
learning_rate=1e-5,
max_iters=2000,
trainer_type="sft"
)
```
2. Add to the training script mapping in `scripts/training/train.py`:
```python
config_map = {
# ... existing configs ...
"config/train_smollm3_custom.py": get_custom_config,
}
```
### Custom Dataset Formats
Extend `src/data.py` to support new formats:
```python
def _load_custom_format(self, data_path: str) -> Dataset:
"""Load custom dataset format"""
# Your custom loading logic here
pass
```
### Custom Training Loops
Extend `src/trainer.py` for specialized training:
```python
class SmolLM3CustomTrainer(SmolLM3Trainer):
def training_step(self, batch):
# Custom training logic
pass
```
## π§ Development & Contributing
### Project Structure
- **`src/`**: Core training modules
- **`config/`**: Training configurations
- **`scripts/`**: Utility scripts and automation
- **`docs/`**: Comprehensive documentation
- **`tests/`**: Test files and debugging tools
### Adding New Features
1. **Configuration**: Add to `config/` directory
2. **Core Logic**: Extend modules in `src/`
3. **Scripts**: Add utility scripts to `scripts/`
4. **Documentation**: Update relevant docs in `docs/`
5. **Tests**: Add test files to `tests/`
### Testing Your Changes
```bash
# Run basic tests
python tests/test_config.py
python tests/test_dataset.py
python tests/test_training.py
# Test specific components
python tests/test_monitoring.py
python tests/test_model_push.py
```
### Code Style
- Follow PEP 8 for Python code
- Use type hints for all functions
- Add comprehensive docstrings
- Include error handling for external APIs
- Use structured logging with consistent field names
## π¨ Troubleshooting
### Common Issues
1. **Out of Memory (OOM)**
```bash
# Reduce batch size in config
batch_size=2 # instead of 8
gradient_accumulation_steps=16 # increase to compensate
```
2. **Token Validation Errors**
```bash
# Validate your HF token
python scripts/validate_hf_token.py YOUR_TOKEN
```
3. **Dataset Loading Issues**
```bash
# Check dataset format
python tests/test_dataset_loading.py
```
### Debug Mode
Enable detailed logging:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
## π€ Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes following the code style
4. Add tests for new functionality
5. Update documentation
6. Submit a pull request
## π License
This project follows the same license as the SmolLM3 model. Please refer to the Hugging Face model page for licensing information.
## π Resources
- [SmolLM3 Blog Post](https://huggingface.co/blog/smollm3)
- [Model Repository](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)
- [GitHub Repository](https://github.com/huggingface/smollm)
- [SmolTalk Dataset](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) |