Spaces:
Running
Running
adds gpt-oss support
Browse files- README.md +4 -3
- config/train_gpt_oss_basic.py +176 -0
- config/train_gpt_oss_h100_optimized.py +203 -0
- config/train_gpt_oss_multilingual_reasoning.py +217 -0
- launch.sh +99 -17
- requirements/requirements_core.txt +9 -5
- scripts/model_tonic/push_gpt_oss_to_huggingface.py +317 -0
- scripts/training/train_gpt_oss.py +227 -0
README.md
CHANGED
|
@@ -10,7 +10,7 @@
|
|
| 10 |
|
| 11 |
# 🤏🏻🏭SmolFactory
|
| 12 |
|
| 13 |
-
SmolFactory helps you train
|
| 14 |
|
| 15 |
<table>
|
| 16 |
<tr>
|
|
@@ -35,7 +35,7 @@ Train and deploy your model with one simple command !
|
|
| 35 |
- **Trackio Monitoring Space**: Real-time training metrics, loss curves, and resource utilization
|
| 36 |
- **Demo Spaces**: Instant web interfaces for model testing and demonstration
|
| 37 |
- **Real-time Metrics**: Live training loss, learning rate, gradient norms, and GPU utilization
|
| 38 |
-
- **Custom Dashboards**: Tailored visualizations for SmolLM3 fine-tuning
|
| 39 |
- **Artifact Logging**: Model checkpoints, configuration files, and training logs
|
| 40 |
- **Experiment Comparison**: Side-by-side analysis of different training runs
|
| 41 |
- **Alert System**: Notifications for training issues or completion
|
|
@@ -44,6 +44,7 @@ Train and deploy your model with one simple command !
|
|
| 44 |
- **Reproducibility**: Complete experiment history with configuration snapshots
|
| 45 |
- **Collaboration**: Easy sharing of training results and model comparisons
|
| 46 |
- **Version Control**: Track dataset changes and model performance over time
|
|
|
|
| 47 |
|
| 48 |
## 🚀 Quick Start
|
| 49 |
|
|
@@ -57,7 +58,7 @@ The easiest way to get started is using the interactive pipeline:
|
|
| 57 |
|
| 58 |
This script will:
|
| 59 |
1. **Authenticate** with Hugging Face (write + read tokens)
|
| 60 |
-
2. **Configure** training parameters interactively
|
| 61 |
3. **Deploy** Trackio Space for monitoring
|
| 62 |
4. **Setup** HF Dataset for experiment tracking
|
| 63 |
5. **Execute** training with your chosen configuration
|
|
|
|
| 10 |
|
| 11 |
# 🤏🏻🏭SmolFactory
|
| 12 |
|
| 13 |
+
SmolFactory helps you train, monitor and deploy your SmolLM3 and GPT-OSS fine-tunes, and more!
|
| 14 |
|
| 15 |
<table>
|
| 16 |
<tr>
|
|
|
|
| 35 |
- **Trackio Monitoring Space**: Real-time training metrics, loss curves, and resource utilization
|
| 36 |
- **Demo Spaces**: Instant web interfaces for model testing and demonstration
|
| 37 |
- **Real-time Metrics**: Live training loss, learning rate, gradient norms, and GPU utilization
|
| 38 |
+
- **Custom Dashboards**: Tailored visualizations for SmolLM3 and GPT-OSS fine-tuning
|
| 39 |
- **Artifact Logging**: Model checkpoints, configuration files, and training logs
|
| 40 |
- **Experiment Comparison**: Side-by-side analysis of different training runs
|
| 41 |
- **Alert System**: Notifications for training issues or completion
|
|
|
|
| 44 |
- **Reproducibility**: Complete experiment history with configuration snapshots
|
| 45 |
- **Collaboration**: Easy sharing of training results and model comparisons
|
| 46 |
- **Version Control**: Track dataset changes and model performance over time
|
| 47 |
+
- **GPT-OSS Support**: Specialized configurations for OpenAI's GPT-OSS-20B model with LoRA and multilingual reasoning
|
| 48 |
|
| 49 |
## 🚀 Quick Start
|
| 50 |
|
|
|
|
| 58 |
|
| 59 |
This script will:
|
| 60 |
1. **Authenticate** with Hugging Face (write + read tokens)
|
| 61 |
+
2. **Configure** training parameters interactively (SmolLM3 or GPT-OSS)
|
| 62 |
3. **Deploy** Trackio Space for monitoring
|
| 63 |
4. **Setup** HF Dataset for experiment tracking
|
| 64 |
5. **Execute** training with your chosen configuration
|
config/train_gpt_oss_basic.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
GPT-OSS Basic Training Configuration
|
| 3 |
+
Based on OpenAI's GPT-OSS fine-tuning tutorial
|
| 4 |
+
Optimized for standard fine-tuning scenarios
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Optional
|
| 10 |
+
|
| 11 |
+
@dataclass
|
| 12 |
+
class GPTOSSBasicConfig:
|
| 13 |
+
"""Basic configuration for GPT-OSS fine-tuning"""
|
| 14 |
+
|
| 15 |
+
# Trainer type selection
|
| 16 |
+
trainer_type: str = "sft" # "sft" or "dpo"
|
| 17 |
+
|
| 18 |
+
# Model configuration - GPT-OSS specific
|
| 19 |
+
model_name: str = "openai/gpt-oss-20b"
|
| 20 |
+
max_seq_length: int = 2048 # GPT-OSS default
|
| 21 |
+
use_flash_attention: bool = True
|
| 22 |
+
use_gradient_checkpointing: bool = True
|
| 23 |
+
|
| 24 |
+
# Training configuration - optimized for GPT-OSS
|
| 25 |
+
batch_size: int = 4 # Conservative for 20B model
|
| 26 |
+
gradient_accumulation_steps: int = 4
|
| 27 |
+
learning_rate: float = 2e-4 # Higher LR as per tutorial
|
| 28 |
+
weight_decay: float = 0.01
|
| 29 |
+
warmup_steps: int = 100
|
| 30 |
+
max_iters: int = 1000
|
| 31 |
+
eval_interval: int = 100
|
| 32 |
+
log_interval: int = 10
|
| 33 |
+
save_interval: int = 500
|
| 34 |
+
|
| 35 |
+
# Optimizer configuration
|
| 36 |
+
optimizer: str = "adamw_torch"
|
| 37 |
+
beta1: float = 0.9
|
| 38 |
+
beta2: float = 0.95
|
| 39 |
+
eps: float = 1e-8
|
| 40 |
+
|
| 41 |
+
# Scheduler configuration
|
| 42 |
+
scheduler: str = "cosine_with_min_lr"
|
| 43 |
+
min_lr: float = 2e-5 # Higher min LR as per tutorial
|
| 44 |
+
lr_scheduler_kwargs: dict = None
|
| 45 |
+
|
| 46 |
+
# Mixed precision - GPT-OSS optimized
|
| 47 |
+
fp16: bool = False # Use bf16 for GPT-OSS
|
| 48 |
+
bf16: bool = True
|
| 49 |
+
|
| 50 |
+
# DDP configuration
|
| 51 |
+
ddp_backend: str = "nccl"
|
| 52 |
+
ddp_find_unused_parameters: bool = False
|
| 53 |
+
|
| 54 |
+
# Logging and saving
|
| 55 |
+
save_steps: int = 500
|
| 56 |
+
eval_steps: int = 100
|
| 57 |
+
logging_steps: int = 10
|
| 58 |
+
save_total_limit: Optional[int] = 3
|
| 59 |
+
|
| 60 |
+
# Evaluation
|
| 61 |
+
eval_strategy: str = "steps"
|
| 62 |
+
metric_for_best_model: str = "eval_loss"
|
| 63 |
+
greater_is_better: bool = False
|
| 64 |
+
load_best_model_at_end: bool = True
|
| 65 |
+
|
| 66 |
+
# Data configuration
|
| 67 |
+
dataset_name: str = "HuggingFaceH4/Multilingual-Thinking"
|
| 68 |
+
dataset_split: str = "train"
|
| 69 |
+
input_field: str = "messages" # GPT-OSS uses messages format
|
| 70 |
+
target_field: str = None # Not used for messages format
|
| 71 |
+
filter_bad_entries: bool = False
|
| 72 |
+
bad_entry_field: str = "bad_entry"
|
| 73 |
+
|
| 74 |
+
# Chat template configuration - GPT-OSS specific
|
| 75 |
+
use_chat_template: bool = True
|
| 76 |
+
chat_template_kwargs: dict = None
|
| 77 |
+
|
| 78 |
+
# Trackio monitoring configuration
|
| 79 |
+
enable_tracking: bool = True
|
| 80 |
+
trackio_url: Optional[str] = None
|
| 81 |
+
trackio_token: Optional[str] = None
|
| 82 |
+
log_artifacts: bool = True
|
| 83 |
+
log_metrics: bool = True
|
| 84 |
+
log_config: bool = True
|
| 85 |
+
experiment_name: Optional[str] = None
|
| 86 |
+
|
| 87 |
+
# HF Datasets configuration
|
| 88 |
+
hf_token: Optional[str] = None
|
| 89 |
+
dataset_repo: Optional[str] = None
|
| 90 |
+
|
| 91 |
+
# GPT-OSS specific configurations
|
| 92 |
+
# LoRA configuration for GPT-OSS
|
| 93 |
+
use_lora: bool = True
|
| 94 |
+
lora_config: dict = None
|
| 95 |
+
|
| 96 |
+
# Quantization for GPT-OSS (MXFP4)
|
| 97 |
+
use_quantization: bool = True
|
| 98 |
+
quantization_config: dict = None
|
| 99 |
+
|
| 100 |
+
# GPT-OSS specific model kwargs
|
| 101 |
+
model_kwargs: dict = None
|
| 102 |
+
|
| 103 |
+
def __post_init__(self):
|
| 104 |
+
if self.chat_template_kwargs is None:
|
| 105 |
+
self.chat_template_kwargs = {
|
| 106 |
+
"add_generation_prompt": True,
|
| 107 |
+
"tokenize": False # GPT-OSS specific
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
if self.lr_scheduler_kwargs is None:
|
| 111 |
+
self.lr_scheduler_kwargs = {
|
| 112 |
+
"min_lr_rate": 0.1
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
if self.lora_config is None:
|
| 116 |
+
self.lora_config = {
|
| 117 |
+
"r": 8,
|
| 118 |
+
"lora_alpha": 16,
|
| 119 |
+
"target_modules": "all-linear",
|
| 120 |
+
"target_parameters": [
|
| 121 |
+
"7.mlp.experts.gate_up_proj",
|
| 122 |
+
"7.mlp.experts.down_proj",
|
| 123 |
+
"15.mlp.experts.gate_up_proj",
|
| 124 |
+
"15.mlp.experts.down_proj",
|
| 125 |
+
"23.mlp.experts.gate_up_proj",
|
| 126 |
+
"23.mlp.experts.down_proj",
|
| 127 |
+
]
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
if self.quantization_config is None:
|
| 131 |
+
self.quantization_config = {
|
| 132 |
+
"dequantize": True
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
if self.model_kwargs is None:
|
| 136 |
+
self.model_kwargs = {
|
| 137 |
+
"attn_implementation": "eager",
|
| 138 |
+
"torch_dtype": "auto",
|
| 139 |
+
"use_cache": False,
|
| 140 |
+
"device_map": "auto"
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
# Validate configuration
|
| 144 |
+
if self.fp16 and self.bf16:
|
| 145 |
+
raise ValueError("Cannot use both fp16 and bf16")
|
| 146 |
+
|
| 147 |
+
if self.max_seq_length > 131072: # 128k limit
|
| 148 |
+
raise ValueError("max_seq_length cannot exceed 131072")
|
| 149 |
+
|
| 150 |
+
# Set default experiment name if not provided
|
| 151 |
+
if self.experiment_name is None:
|
| 152 |
+
self.experiment_name = "gpt_oss_basic"
|
| 153 |
+
|
| 154 |
+
def get_config(config_path: str) -> GPTOSSBasicConfig:
|
| 155 |
+
"""Load configuration from file or return default"""
|
| 156 |
+
if os.path.exists(config_path):
|
| 157 |
+
# Load from file if it exists
|
| 158 |
+
import importlib.util
|
| 159 |
+
spec = importlib.util.spec_from_file_location("config_module", config_path)
|
| 160 |
+
config_module = importlib.util.module_from_spec(spec)
|
| 161 |
+
spec.loader.exec_module(config_module)
|
| 162 |
+
|
| 163 |
+
if hasattr(config_module, 'config'):
|
| 164 |
+
return config_module.config
|
| 165 |
+
else:
|
| 166 |
+
# Try to find a config class
|
| 167 |
+
for attr_name in dir(config_module):
|
| 168 |
+
attr = getattr(config_module, attr_name)
|
| 169 |
+
if isinstance(attr, GPTOSSBasicConfig):
|
| 170 |
+
return attr
|
| 171 |
+
|
| 172 |
+
# Return default configuration
|
| 173 |
+
return GPTOSSBasicConfig()
|
| 174 |
+
|
| 175 |
+
# Default configuration instance
|
| 176 |
+
config = GPTOSSBasicConfig()
|
config/train_gpt_oss_h100_optimized.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
GPT-OSS H100 Optimized Training Configuration
|
| 3 |
+
Based on OpenAI's GPT-OSS fine-tuning tutorial
|
| 4 |
+
Optimized for H100 GPU with maximum performance
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Optional
|
| 10 |
+
|
| 11 |
+
@dataclass
|
| 12 |
+
class GPTOSSH100OptimizedConfig:
|
| 13 |
+
"""H100-optimized configuration for GPT-OSS fine-tuning"""
|
| 14 |
+
|
| 15 |
+
# Trainer type selection
|
| 16 |
+
trainer_type: str = "sft" # "sft" or "dpo"
|
| 17 |
+
|
| 18 |
+
# Model configuration - GPT-OSS specific with H100 optimizations
|
| 19 |
+
model_name: str = "openai/gpt-oss-20b"
|
| 20 |
+
max_seq_length: int = 4096 # Increased for H100
|
| 21 |
+
use_flash_attention: bool = True
|
| 22 |
+
use_gradient_checkpointing: bool = True
|
| 23 |
+
|
| 24 |
+
# Training configuration - H100 optimized
|
| 25 |
+
batch_size: int = 8 # Larger batch size for H100
|
| 26 |
+
gradient_accumulation_steps: int = 2 # Reduced for faster updates
|
| 27 |
+
learning_rate: float = 3e-4 # Higher LR for H100
|
| 28 |
+
weight_decay: float = 0.01
|
| 29 |
+
warmup_steps: int = 50 # Reduced warmup for rapid training
|
| 30 |
+
max_iters: int = 2000 # More iterations for H100
|
| 31 |
+
eval_interval: int = 50 # More frequent evaluation
|
| 32 |
+
log_interval: int = 5 # More frequent logging
|
| 33 |
+
save_interval: int = 200 # More frequent saving
|
| 34 |
+
|
| 35 |
+
# Optimizer configuration - H100 optimized
|
| 36 |
+
optimizer: str = "adamw_torch"
|
| 37 |
+
beta1: float = 0.9
|
| 38 |
+
beta2: float = 0.95
|
| 39 |
+
eps: float = 1e-8
|
| 40 |
+
|
| 41 |
+
# Scheduler configuration - faster learning
|
| 42 |
+
scheduler: str = "cosine_with_min_lr"
|
| 43 |
+
min_lr: float = 3e-5 # Higher min LR for H100
|
| 44 |
+
lr_scheduler_kwargs: dict = None
|
| 45 |
+
|
| 46 |
+
# Mixed precision - H100 optimized
|
| 47 |
+
fp16: bool = False # Use bf16 for H100
|
| 48 |
+
bf16: bool = True
|
| 49 |
+
|
| 50 |
+
# DDP configuration
|
| 51 |
+
ddp_backend: str = "nccl"
|
| 52 |
+
ddp_find_unused_parameters: bool = False
|
| 53 |
+
|
| 54 |
+
# Logging and saving - optimized for rapid training
|
| 55 |
+
save_steps: int = 200
|
| 56 |
+
eval_steps: int = 50
|
| 57 |
+
logging_steps: int = 5
|
| 58 |
+
save_total_limit: Optional[int] = 2 # Keep fewer checkpoints
|
| 59 |
+
|
| 60 |
+
# Evaluation
|
| 61 |
+
eval_strategy: str = "steps"
|
| 62 |
+
metric_for_best_model: str = "eval_loss"
|
| 63 |
+
greater_is_better: bool = False
|
| 64 |
+
load_best_model_at_end: bool = True
|
| 65 |
+
|
| 66 |
+
# Data configuration
|
| 67 |
+
dataset_name: str = "HuggingFaceH4/Multilingual-Thinking"
|
| 68 |
+
dataset_split: str = "train"
|
| 69 |
+
input_field: str = "messages" # GPT-OSS uses messages format
|
| 70 |
+
target_field: str = None # Not used for messages format
|
| 71 |
+
filter_bad_entries: bool = False
|
| 72 |
+
bad_entry_field: str = "bad_entry"
|
| 73 |
+
|
| 74 |
+
# Chat template configuration - GPT-OSS specific
|
| 75 |
+
use_chat_template: bool = True
|
| 76 |
+
chat_template_kwargs: dict = None
|
| 77 |
+
|
| 78 |
+
# Trackio monitoring configuration
|
| 79 |
+
enable_tracking: bool = True
|
| 80 |
+
trackio_url: Optional[str] = None
|
| 81 |
+
trackio_token: Optional[str] = None
|
| 82 |
+
log_artifacts: bool = True
|
| 83 |
+
log_metrics: bool = True
|
| 84 |
+
log_config: bool = True
|
| 85 |
+
experiment_name: Optional[str] = None
|
| 86 |
+
|
| 87 |
+
# HF Datasets configuration
|
| 88 |
+
hf_token: Optional[str] = None
|
| 89 |
+
dataset_repo: Optional[str] = None
|
| 90 |
+
|
| 91 |
+
# GPT-OSS specific configurations
|
| 92 |
+
# LoRA configuration for GPT-OSS - H100 optimized
|
| 93 |
+
use_lora: bool = True
|
| 94 |
+
lora_config: dict = None
|
| 95 |
+
|
| 96 |
+
# Quantization for GPT-OSS (MXFP4) - H100 optimized
|
| 97 |
+
use_quantization: bool = True
|
| 98 |
+
quantization_config: dict = None
|
| 99 |
+
|
| 100 |
+
# GPT-OSS specific model kwargs - H100 optimized
|
| 101 |
+
model_kwargs: dict = None
|
| 102 |
+
|
| 103 |
+
# H100-specific optimizations
|
| 104 |
+
dataloader_num_workers: int = 8 # More workers for H100
|
| 105 |
+
dataloader_pin_memory: bool = True
|
| 106 |
+
dataloader_prefetch_factor: int = 4 # Increased prefetch
|
| 107 |
+
|
| 108 |
+
# Memory optimizations for H100
|
| 109 |
+
max_grad_norm: float = 1.0
|
| 110 |
+
group_by_length: bool = True # Group similar length sequences
|
| 111 |
+
|
| 112 |
+
def __post_init__(self):
|
| 113 |
+
if self.chat_template_kwargs is None:
|
| 114 |
+
self.chat_template_kwargs = {
|
| 115 |
+
"add_generation_prompt": True,
|
| 116 |
+
"tokenize": False # GPT-OSS specific
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
if self.lr_scheduler_kwargs is None:
|
| 120 |
+
self.lr_scheduler_kwargs = {
|
| 121 |
+
"min_lr_rate": 0.1
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
if self.lora_config is None:
|
| 125 |
+
self.lora_config = {
|
| 126 |
+
"r": 16, # Increased for H100
|
| 127 |
+
"lora_alpha": 32, # Increased for H100
|
| 128 |
+
"target_modules": "all-linear",
|
| 129 |
+
"target_parameters": [
|
| 130 |
+
"7.mlp.experts.gate_up_proj",
|
| 131 |
+
"7.mlp.experts.down_proj",
|
| 132 |
+
"15.mlp.experts.gate_up_proj",
|
| 133 |
+
"15.mlp.experts.down_proj",
|
| 134 |
+
"23.mlp.experts.gate_up_proj",
|
| 135 |
+
"23.mlp.experts.down_proj",
|
| 136 |
+
]
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
if self.quantization_config is None:
|
| 140 |
+
self.quantization_config = {
|
| 141 |
+
"dequantize": True
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
if self.model_kwargs is None:
|
| 145 |
+
self.model_kwargs = {
|
| 146 |
+
"attn_implementation": "eager",
|
| 147 |
+
"torch_dtype": "auto",
|
| 148 |
+
"use_cache": False,
|
| 149 |
+
"device_map": "auto"
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
# Validate configuration
|
| 153 |
+
if self.fp16 and self.bf16:
|
| 154 |
+
raise ValueError("Cannot use both fp16 and bf16")
|
| 155 |
+
|
| 156 |
+
if self.max_seq_length > 131072: # 128k limit
|
| 157 |
+
raise ValueError("max_seq_length cannot exceed 131072")
|
| 158 |
+
|
| 159 |
+
# Calculate training statistics for H100
|
| 160 |
+
effective_batch_size = self.batch_size * self.gradient_accumulation_steps
|
| 161 |
+
steps_per_epoch = 1000 // effective_batch_size # Approximate for Multilingual-Thinking
|
| 162 |
+
epochs_for_max_iters = self.max_iters / steps_per_epoch
|
| 163 |
+
|
| 164 |
+
print(f"=== GPT-OSS H100 Optimized Configuration ===")
|
| 165 |
+
print(f"Effective batch size: {effective_batch_size}")
|
| 166 |
+
print(f"Steps per epoch: ~{steps_per_epoch}")
|
| 167 |
+
print(f"Training for ~{epochs_for_max_iters:.1f} epochs")
|
| 168 |
+
print(f"Total training steps: {self.max_iters}")
|
| 169 |
+
print(f"Learning rate: {self.learning_rate}")
|
| 170 |
+
print(f"Mixed precision: {'bf16' if self.bf16 else 'fp16'}")
|
| 171 |
+
print(f"Max sequence length: {self.max_seq_length}")
|
| 172 |
+
print(f"Gradient checkpointing: {self.use_gradient_checkpointing}")
|
| 173 |
+
print(f"LoRA rank: {self.lora_config['r']}")
|
| 174 |
+
print(f"Data loader workers: {self.dataloader_num_workers}")
|
| 175 |
+
print("=" * 50)
|
| 176 |
+
|
| 177 |
+
# Set default experiment name if not provided
|
| 178 |
+
if self.experiment_name is None:
|
| 179 |
+
self.experiment_name = "gpt_oss_h100_optimized"
|
| 180 |
+
|
| 181 |
+
def get_config(config_path: str) -> GPTOSSH100OptimizedConfig:
|
| 182 |
+
"""Load configuration from file or return default"""
|
| 183 |
+
if os.path.exists(config_path):
|
| 184 |
+
# Load from file if it exists
|
| 185 |
+
import importlib.util
|
| 186 |
+
spec = importlib.util.spec_from_file_location("config_module", config_path)
|
| 187 |
+
config_module = importlib.util.module_from_spec(spec)
|
| 188 |
+
spec.loader.exec_module(config_module)
|
| 189 |
+
|
| 190 |
+
if hasattr(config_module, 'config'):
|
| 191 |
+
return config_module.config
|
| 192 |
+
else:
|
| 193 |
+
# Try to find a config class
|
| 194 |
+
for attr_name in dir(config_module):
|
| 195 |
+
attr = getattr(config_module, attr_name)
|
| 196 |
+
if isinstance(attr, GPTOSSH100OptimizedConfig):
|
| 197 |
+
return attr
|
| 198 |
+
|
| 199 |
+
# Return default configuration
|
| 200 |
+
return GPTOSSH100OptimizedConfig()
|
| 201 |
+
|
| 202 |
+
# Default configuration instance
|
| 203 |
+
config = GPTOSSH100OptimizedConfig()
|
config/train_gpt_oss_multilingual_reasoning.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
GPT-OSS Multilingual Reasoning Training Configuration
|
| 3 |
+
Based on OpenAI's GPT-OSS fine-tuning tutorial
|
| 4 |
+
Specialized for multilingual reasoning tasks
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Optional
|
| 10 |
+
|
| 11 |
+
@dataclass
|
| 12 |
+
class GPTOSSMultilingualReasoningConfig:
|
| 13 |
+
"""Multilingual reasoning configuration for GPT-OSS fine-tuning"""
|
| 14 |
+
|
| 15 |
+
# Trainer type selection
|
| 16 |
+
trainer_type: str = "sft" # "sft" or "dpo"
|
| 17 |
+
|
| 18 |
+
# Model configuration - GPT-OSS specific for multilingual reasoning
|
| 19 |
+
model_name: str = "openai/gpt-oss-20b"
|
| 20 |
+
max_seq_length: int = 2048 # Standard for reasoning tasks
|
| 21 |
+
use_flash_attention: bool = True
|
| 22 |
+
use_gradient_checkpointing: bool = True
|
| 23 |
+
|
| 24 |
+
# Training configuration - optimized for multilingual reasoning
|
| 25 |
+
batch_size: int = 4 # Conservative for reasoning tasks
|
| 26 |
+
gradient_accumulation_steps: int = 4
|
| 27 |
+
learning_rate: float = 2e-4 # As per tutorial
|
| 28 |
+
weight_decay: float = 0.01
|
| 29 |
+
warmup_steps: int = 100
|
| 30 |
+
max_iters: int = 1000 # 1 epoch on Multilingual-Thinking
|
| 31 |
+
eval_interval: int = 100
|
| 32 |
+
log_interval: int = 10
|
| 33 |
+
save_interval: int = 500
|
| 34 |
+
|
| 35 |
+
# Optimizer configuration
|
| 36 |
+
optimizer: str = "adamw_torch"
|
| 37 |
+
beta1: float = 0.9
|
| 38 |
+
beta2: float = 0.95
|
| 39 |
+
eps: float = 1e-8
|
| 40 |
+
|
| 41 |
+
# Scheduler configuration - as per tutorial
|
| 42 |
+
scheduler: str = "cosine_with_min_lr"
|
| 43 |
+
min_lr: float = 2e-5 # As per tutorial
|
| 44 |
+
lr_scheduler_kwargs: dict = None
|
| 45 |
+
|
| 46 |
+
# Mixed precision - GPT-OSS optimized
|
| 47 |
+
fp16: bool = False # Use bf16 for GPT-OSS
|
| 48 |
+
bf16: bool = True
|
| 49 |
+
|
| 50 |
+
# DDP configuration
|
| 51 |
+
ddp_backend: str = "nccl"
|
| 52 |
+
ddp_find_unused_parameters: bool = False
|
| 53 |
+
|
| 54 |
+
# Logging and saving
|
| 55 |
+
save_steps: int = 500
|
| 56 |
+
eval_steps: int = 100
|
| 57 |
+
logging_steps: int = 10
|
| 58 |
+
save_total_limit: Optional[int] = 3
|
| 59 |
+
|
| 60 |
+
# Evaluation
|
| 61 |
+
eval_strategy: str = "steps"
|
| 62 |
+
metric_for_best_model: str = "eval_loss"
|
| 63 |
+
greater_is_better: bool = False
|
| 64 |
+
load_best_model_at_end: bool = True
|
| 65 |
+
|
| 66 |
+
# Data configuration - Multilingual-Thinking specific
|
| 67 |
+
dataset_name: str = "HuggingFaceH4/Multilingual-Thinking"
|
| 68 |
+
dataset_split: str = "train"
|
| 69 |
+
input_field: str = "messages" # GPT-OSS uses messages format
|
| 70 |
+
target_field: str = None # Not used for messages format
|
| 71 |
+
filter_bad_entries: bool = False
|
| 72 |
+
bad_entry_field: str = "bad_entry"
|
| 73 |
+
|
| 74 |
+
# Chat template configuration - GPT-OSS specific
|
| 75 |
+
use_chat_template: bool = True
|
| 76 |
+
chat_template_kwargs: dict = None
|
| 77 |
+
|
| 78 |
+
# Trackio monitoring configuration
|
| 79 |
+
enable_tracking: bool = True
|
| 80 |
+
trackio_url: Optional[str] = None
|
| 81 |
+
trackio_token: Optional[str] = None
|
| 82 |
+
log_artifacts: bool = True
|
| 83 |
+
log_metrics: bool = True
|
| 84 |
+
log_config: bool = True
|
| 85 |
+
experiment_name: Optional[str] = None
|
| 86 |
+
|
| 87 |
+
# HF Datasets configuration
|
| 88 |
+
hf_token: Optional[str] = None
|
| 89 |
+
dataset_repo: Optional[str] = None
|
| 90 |
+
|
| 91 |
+
# GPT-OSS specific configurations
|
| 92 |
+
# LoRA configuration for GPT-OSS - as per tutorial
|
| 93 |
+
use_lora: bool = True
|
| 94 |
+
lora_config: dict = None
|
| 95 |
+
|
| 96 |
+
# Quantization for GPT-OSS (MXFP4) - as per tutorial
|
| 97 |
+
use_quantization: bool = True
|
| 98 |
+
quantization_config: dict = None
|
| 99 |
+
|
| 100 |
+
# GPT-OSS specific model kwargs - as per tutorial
|
| 101 |
+
model_kwargs: dict = None
|
| 102 |
+
|
| 103 |
+
# Multilingual reasoning specific configurations
|
| 104 |
+
# Generation parameters for multilingual reasoning
|
| 105 |
+
generation_config: dict = None
|
| 106 |
+
|
| 107 |
+
# Multilingual reasoning evaluation languages
|
| 108 |
+
reasoning_languages: list = None
|
| 109 |
+
|
| 110 |
+
def __post_init__(self):
|
| 111 |
+
if self.chat_template_kwargs is None:
|
| 112 |
+
self.chat_template_kwargs = {
|
| 113 |
+
"add_generation_prompt": True,
|
| 114 |
+
"tokenize": False # GPT-OSS specific
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
if self.lr_scheduler_kwargs is None:
|
| 118 |
+
self.lr_scheduler_kwargs = {
|
| 119 |
+
"min_lr_rate": 0.1
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
if self.lora_config is None:
|
| 123 |
+
self.lora_config = {
|
| 124 |
+
"r": 8,
|
| 125 |
+
"lora_alpha": 16,
|
| 126 |
+
"target_modules": "all-linear",
|
| 127 |
+
"target_parameters": [
|
| 128 |
+
"7.mlp.experts.gate_up_proj",
|
| 129 |
+
"7.mlp.experts.down_proj",
|
| 130 |
+
"15.mlp.experts.gate_up_proj",
|
| 131 |
+
"15.mlp.experts.down_proj",
|
| 132 |
+
"23.mlp.experts.gate_up_proj",
|
| 133 |
+
"23.mlp.experts.down_proj",
|
| 134 |
+
]
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
if self.quantization_config is None:
|
| 138 |
+
self.quantization_config = {
|
| 139 |
+
"dequantize": True
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
if self.model_kwargs is None:
|
| 143 |
+
self.model_kwargs = {
|
| 144 |
+
"attn_implementation": "eager",
|
| 145 |
+
"torch_dtype": "auto",
|
| 146 |
+
"use_cache": False,
|
| 147 |
+
"device_map": "auto"
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
if self.generation_config is None:
|
| 151 |
+
self.generation_config = {
|
| 152 |
+
"max_new_tokens": 512,
|
| 153 |
+
"do_sample": True,
|
| 154 |
+
"temperature": 0.6,
|
| 155 |
+
"top_p": None,
|
| 156 |
+
"top_k": None
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
if self.reasoning_languages is None:
|
| 160 |
+
self.reasoning_languages = [
|
| 161 |
+
"English", "Spanish", "French", "Italian", "German",
|
| 162 |
+
"Chinese", "Hindi", "Japanese", "Korean", "Arabic"
|
| 163 |
+
]
|
| 164 |
+
|
| 165 |
+
# Validate configuration
|
| 166 |
+
if self.fp16 and self.bf16:
|
| 167 |
+
raise ValueError("Cannot use both fp16 and bf16")
|
| 168 |
+
|
| 169 |
+
if self.max_seq_length > 131072: # 128k limit
|
| 170 |
+
raise ValueError("max_seq_length cannot exceed 131072")
|
| 171 |
+
|
| 172 |
+
# Calculate training statistics for Multilingual-Thinking
|
| 173 |
+
effective_batch_size = self.batch_size * self.gradient_accumulation_steps
|
| 174 |
+
steps_per_epoch = 1000 // effective_batch_size # Multilingual-Thinking has 1000 examples
|
| 175 |
+
epochs_for_max_iters = self.max_iters / steps_per_epoch
|
| 176 |
+
|
| 177 |
+
print(f"=== GPT-OSS Multilingual Reasoning Configuration ===")
|
| 178 |
+
print(f"Dataset: {self.dataset_name}")
|
| 179 |
+
print(f"Effective batch size: {effective_batch_size}")
|
| 180 |
+
print(f"Steps per epoch: ~{steps_per_epoch}")
|
| 181 |
+
print(f"Training for ~{epochs_for_max_iters:.1f} epochs")
|
| 182 |
+
print(f"Total training steps: {self.max_iters}")
|
| 183 |
+
print(f"Learning rate: {self.learning_rate}")
|
| 184 |
+
print(f"Mixed precision: {'bf16' if self.bf16 else 'fp16'}")
|
| 185 |
+
print(f"Max sequence length: {self.max_seq_length}")
|
| 186 |
+
print(f"Gradient checkpointing: {self.use_gradient_checkpointing}")
|
| 187 |
+
print(f"LoRA rank: {self.lora_config['r']}")
|
| 188 |
+
print(f"Supported reasoning languages: {len(self.reasoning_languages)}")
|
| 189 |
+
print("=" * 50)
|
| 190 |
+
|
| 191 |
+
# Set default experiment name if not provided
|
| 192 |
+
if self.experiment_name is None:
|
| 193 |
+
self.experiment_name = "gpt_oss_multilingual_reasoning"
|
| 194 |
+
|
| 195 |
+
def get_config(config_path: str) -> GPTOSSMultilingualReasoningConfig:
|
| 196 |
+
"""Load configuration from file or return default"""
|
| 197 |
+
if os.path.exists(config_path):
|
| 198 |
+
# Load from file if it exists
|
| 199 |
+
import importlib.util
|
| 200 |
+
spec = importlib.util.spec_from_file_location("config_module", config_path)
|
| 201 |
+
config_module = importlib.util.module_from_spec(spec)
|
| 202 |
+
spec.loader.exec_module(config_module)
|
| 203 |
+
|
| 204 |
+
if hasattr(config_module, 'config'):
|
| 205 |
+
return config_module.config
|
| 206 |
+
else:
|
| 207 |
+
# Try to find a config class
|
| 208 |
+
for attr_name in dir(config_module):
|
| 209 |
+
attr = getattr(config_module, attr_name)
|
| 210 |
+
if isinstance(attr, GPTOSSMultilingualReasoningConfig):
|
| 211 |
+
return attr
|
| 212 |
+
|
| 213 |
+
# Return default configuration
|
| 214 |
+
return GPTOSSMultilingualReasoningConfig()
|
| 215 |
+
|
| 216 |
+
# Default configuration instance
|
| 217 |
+
config = GPTOSSMultilingualReasoningConfig()
|
launch.sh
CHANGED
|
@@ -164,6 +164,7 @@ show_training_configs() {
|
|
| 164 |
print_header "Available Training Configurations"
|
| 165 |
echo "======================================"
|
| 166 |
echo ""
|
|
|
|
| 167 |
echo "1. Basic Training (Default)"
|
| 168 |
echo " - Model: SmolLM3-3B"
|
| 169 |
echo " - Dataset: SmolTalk"
|
|
@@ -196,7 +197,35 @@ show_training_configs() {
|
|
| 196 |
echo " - Learning Rate: 3e-6"
|
| 197 |
echo " - Sequence Length: 8192"
|
| 198 |
echo ""
|
| 199 |
-
echo "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
echo " - User-defined parameters"
|
| 201 |
echo ""
|
| 202 |
}
|
|
@@ -247,6 +276,36 @@ get_training_config() {
|
|
| 247 |
MAX_SEQ_LENGTH=8192
|
| 248 |
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py"
|
| 249 |
;;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
"Custom Configuration")
|
| 251 |
get_custom_config
|
| 252 |
;;
|
|
@@ -419,7 +478,7 @@ print_step "Step 2: Training Configuration"
|
|
| 419 |
echo "=================================="
|
| 420 |
|
| 421 |
show_training_configs
|
| 422 |
-
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "Custom Configuration" TRAINING_CONFIG_TYPE
|
| 423 |
|
| 424 |
get_training_config "$TRAINING_CONFIG_TYPE"
|
| 425 |
|
|
@@ -783,13 +842,24 @@ export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
|
|
| 783 |
export HF_USERNAME="$HF_USERNAME"
|
| 784 |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
|
| 785 |
|
| 786 |
-
# Run the
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 793 |
|
| 794 |
# Step 16: Push model to Hugging Face Hub
|
| 795 |
print_step "Step 16: Pushing Model to HF Hub"
|
|
@@ -806,14 +876,26 @@ export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
|
|
| 806 |
export HF_USERNAME="$HF_USERNAME"
|
| 807 |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
|
| 808 |
|
| 809 |
-
# Run the push script
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 817 |
|
| 818 |
# Step 16.5: Switch Trackio Space to Read Token (Security)
|
| 819 |
print_step "Step 16.5: Switching to Read Token for Security"
|
|
|
|
| 164 |
print_header "Available Training Configurations"
|
| 165 |
echo "======================================"
|
| 166 |
echo ""
|
| 167 |
+
echo "=== SmolLM3 Configurations ==="
|
| 168 |
echo "1. Basic Training (Default)"
|
| 169 |
echo " - Model: SmolLM3-3B"
|
| 170 |
echo " - Dataset: SmolTalk"
|
|
|
|
| 197 |
echo " - Learning Rate: 3e-6"
|
| 198 |
echo " - Sequence Length: 8192"
|
| 199 |
echo ""
|
| 200 |
+
echo "=== GPT-OSS Configurations ==="
|
| 201 |
+
echo "5. GPT-OSS Basic Training"
|
| 202 |
+
echo " - Model: openai/gpt-oss-20b"
|
| 203 |
+
echo " - Dataset: Multilingual-Thinking"
|
| 204 |
+
echo " - Epochs: 1"
|
| 205 |
+
echo " - Batch Size: 4"
|
| 206 |
+
echo " - Learning Rate: 2e-4"
|
| 207 |
+
echo " - LoRA + MXFP4 Quantization"
|
| 208 |
+
echo " - Optimized for multilingual reasoning"
|
| 209 |
+
echo ""
|
| 210 |
+
echo "6. GPT-OSS H100 Optimized"
|
| 211 |
+
echo " - Model: openai/gpt-oss-20b"
|
| 212 |
+
echo " - Dataset: Multilingual-Thinking"
|
| 213 |
+
echo " - Epochs: 2"
|
| 214 |
+
echo " - Batch Size: 8"
|
| 215 |
+
echo " - Learning Rate: 3e-4"
|
| 216 |
+
echo " - Enhanced LoRA (rank 16)"
|
| 217 |
+
echo " - Optimized for H100 performance"
|
| 218 |
+
echo ""
|
| 219 |
+
echo "7. GPT-OSS Multilingual Reasoning"
|
| 220 |
+
echo " - Model: openai/gpt-oss-20b"
|
| 221 |
+
echo " - Dataset: Multilingual-Thinking"
|
| 222 |
+
echo " - Epochs: 1"
|
| 223 |
+
echo " - Batch Size: 4"
|
| 224 |
+
echo " - Learning Rate: 2e-4"
|
| 225 |
+
echo " - Specialized for reasoning tasks"
|
| 226 |
+
echo " - Supports 10+ languages"
|
| 227 |
+
echo ""
|
| 228 |
+
echo "8. Custom Configuration"
|
| 229 |
echo " - User-defined parameters"
|
| 230 |
echo ""
|
| 231 |
}
|
|
|
|
| 276 |
MAX_SEQ_LENGTH=8192
|
| 277 |
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py"
|
| 278 |
;;
|
| 279 |
+
"GPT-OSS Basic Training")
|
| 280 |
+
MODEL_NAME="openai/gpt-oss-20b"
|
| 281 |
+
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
|
| 282 |
+
MAX_EPOCHS=1
|
| 283 |
+
BATCH_SIZE=4
|
| 284 |
+
GRADIENT_ACCUMULATION_STEPS=4
|
| 285 |
+
LEARNING_RATE=2e-4
|
| 286 |
+
MAX_SEQ_LENGTH=2048
|
| 287 |
+
CONFIG_FILE="config/train_gpt_oss_basic.py"
|
| 288 |
+
;;
|
| 289 |
+
"GPT-OSS H100 Optimized")
|
| 290 |
+
MODEL_NAME="openai/gpt-oss-20b"
|
| 291 |
+
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
|
| 292 |
+
MAX_EPOCHS=2
|
| 293 |
+
BATCH_SIZE=8
|
| 294 |
+
GRADIENT_ACCUMULATION_STEPS=2
|
| 295 |
+
LEARNING_RATE=3e-4
|
| 296 |
+
MAX_SEQ_LENGTH=4096
|
| 297 |
+
CONFIG_FILE="config/train_gpt_oss_h100_optimized.py"
|
| 298 |
+
;;
|
| 299 |
+
"GPT-OSS Multilingual Reasoning")
|
| 300 |
+
MODEL_NAME="openai/gpt-oss-20b"
|
| 301 |
+
DATASET_NAME="HuggingFaceH4/Multilingual-Thinking"
|
| 302 |
+
MAX_EPOCHS=1
|
| 303 |
+
BATCH_SIZE=4
|
| 304 |
+
GRADIENT_ACCUMULATION_STEPS=4
|
| 305 |
+
LEARNING_RATE=2e-4
|
| 306 |
+
MAX_SEQ_LENGTH=2048
|
| 307 |
+
CONFIG_FILE="config/train_gpt_oss_multilingual_reasoning.py"
|
| 308 |
+
;;
|
| 309 |
"Custom Configuration")
|
| 310 |
get_custom_config
|
| 311 |
;;
|
|
|
|
| 478 |
echo "=================================="
|
| 479 |
|
| 480 |
show_training_configs
|
| 481 |
+
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "GPT-OSS Basic Training" "GPT-OSS H100 Optimized" "GPT-OSS Multilingual Reasoning" "Custom Configuration" TRAINING_CONFIG_TYPE
|
| 482 |
|
| 483 |
get_training_config "$TRAINING_CONFIG_TYPE"
|
| 484 |
|
|
|
|
| 842 |
export HF_USERNAME="$HF_USERNAME"
|
| 843 |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
|
| 844 |
|
| 845 |
+
# Run the appropriate training script based on model type
|
| 846 |
+
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
|
| 847 |
+
print_info "Using GPT-OSS specialized training script..."
|
| 848 |
+
python scripts/training/train_gpt_oss.py \
|
| 849 |
+
--config "$CONFIG_FILE" \
|
| 850 |
+
--experiment-name "$EXPERIMENT_NAME" \
|
| 851 |
+
--output-dir /output-checkpoint \
|
| 852 |
+
--trackio-url "$TRACKIO_URL" \
|
| 853 |
+
--trainer-type "$TRAINER_TYPE_LOWER"
|
| 854 |
+
else
|
| 855 |
+
print_info "Using standard SmolLM3 training script..."
|
| 856 |
+
python scripts/training/train.py \
|
| 857 |
+
--config "$CONFIG_FILE" \
|
| 858 |
+
--experiment-name "$EXPERIMENT_NAME" \
|
| 859 |
+
--output-dir /output-checkpoint \
|
| 860 |
+
--trackio-url "$TRACKIO_URL" \
|
| 861 |
+
--trainer-type "$TRAINER_TYPE_LOWER"
|
| 862 |
+
fi
|
| 863 |
|
| 864 |
# Step 16: Push model to Hugging Face Hub
|
| 865 |
print_step "Step 16: Pushing Model to HF Hub"
|
|
|
|
| 876 |
export HF_USERNAME="$HF_USERNAME"
|
| 877 |
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
|
| 878 |
|
| 879 |
+
# Run the appropriate push script based on model type
|
| 880 |
+
if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then
|
| 881 |
+
print_info "Using GPT-OSS specialized push script..."
|
| 882 |
+
python scripts/model_tonic/push_gpt_oss_to_huggingface.py /output-checkpoint "$REPO_NAME" \
|
| 883 |
+
--token "$HF_TOKEN" \
|
| 884 |
+
--trackio-url "$TRACKIO_URL" \
|
| 885 |
+
--experiment-name "$EXPERIMENT_NAME" \
|
| 886 |
+
--dataset-repo "$TRACKIO_DATASET_REPO" \
|
| 887 |
+
--author-name "$AUTHOR_NAME" \
|
| 888 |
+
--model-description "$MODEL_DESCRIPTION"
|
| 889 |
+
else
|
| 890 |
+
print_info "Using standard SmolLM3 push script..."
|
| 891 |
+
python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \
|
| 892 |
+
--token "$HF_TOKEN" \
|
| 893 |
+
--trackio-url "$TRACKIO_URL" \
|
| 894 |
+
--experiment-name "$EXPERIMENT_NAME" \
|
| 895 |
+
--dataset-repo "$TRACKIO_DATASET_REPO" \
|
| 896 |
+
--author-name "$AUTHOR_NAME" \
|
| 897 |
+
--model-description "$MODEL_DESCRIPTION"
|
| 898 |
+
fi
|
| 899 |
|
| 900 |
# Step 16.5: Switch Trackio Space to Read Token (Security)
|
| 901 |
print_step "Step 16.5: Switching to Read Token for Security"
|
requirements/requirements_core.txt
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
-
# Core dependencies for SmolLM3 fine-tuning
|
| 2 |
torch>=2.0.0
|
| 3 |
-
transformers>=4.
|
| 4 |
datasets>=2.14.0
|
| 5 |
accelerate>=0.20.0
|
| 6 |
-
peft>=0.
|
| 7 |
-
trl>=0.
|
| 8 |
|
| 9 |
# Hugging Face Hub for model and space management
|
| 10 |
huggingface_hub>=0.19.0
|
|
@@ -16,4 +16,8 @@ pandas>=2.0.0
|
|
| 16 |
plotly>=5.0.0
|
| 17 |
trackio>=0.1.0
|
| 18 |
psutil>=5.9.0
|
| 19 |
-
pynvml>=12.0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core dependencies for SmolLM3 and GPT-OSS fine-tuning
|
| 2 |
torch>=2.0.0
|
| 3 |
+
transformers>=4.55.0 # Updated for GPT-OSS compatibility
|
| 4 |
datasets>=2.14.0
|
| 5 |
accelerate>=0.20.0
|
| 6 |
+
peft>=0.17.0 # Updated for GPT-OSS LoRA support
|
| 7 |
+
trl>=0.20.0 # Updated for GPT-OSS compatibility
|
| 8 |
|
| 9 |
# Hugging Face Hub for model and space management
|
| 10 |
huggingface_hub>=0.19.0
|
|
|
|
| 16 |
plotly>=5.0.0
|
| 17 |
trackio>=0.1.0
|
| 18 |
psutil>=5.9.0
|
| 19 |
+
pynvml>=12.0.0
|
| 20 |
+
|
| 21 |
+
# GPT-OSS specific dependencies
|
| 22 |
+
# Note: GPT-OSS requires specific versions for optimal performance
|
| 23 |
+
# These are compatible with the tutorial requirements
|
scripts/model_tonic/push_gpt_oss_to_huggingface.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
GPT-OSS Model Push Script
|
| 4 |
+
Specialized script for pushing GPT-OSS models to Hugging Face Hub
|
| 5 |
+
Handles LoRA weight merging and model card generation
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import argparse
|
| 11 |
+
import json
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 14 |
+
from peft import PeftModel
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
def merge_lora_weights(checkpoint_path, base_model_name, output_path):
|
| 18 |
+
"""Merge LoRA weights with base model for inference"""
|
| 19 |
+
|
| 20 |
+
print(f"Loading base model: {base_model_name}")
|
| 21 |
+
|
| 22 |
+
# Load base model
|
| 23 |
+
model_kwargs = {
|
| 24 |
+
"attn_implementation": "eager",
|
| 25 |
+
"torch_dtype": "auto",
|
| 26 |
+
"use_cache": True,
|
| 27 |
+
"device_map": "auto"
|
| 28 |
+
}
|
| 29 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, **model_kwargs).cuda()
|
| 30 |
+
|
| 31 |
+
print(f"Loading LoRA weights from: {checkpoint_path}")
|
| 32 |
+
|
| 33 |
+
# Load and merge LoRA weights
|
| 34 |
+
model = PeftModel.from_pretrained(base_model, checkpoint_path)
|
| 35 |
+
model = model.merge_and_unload()
|
| 36 |
+
|
| 37 |
+
print(f"Saving merged model to: {output_path}")
|
| 38 |
+
model.save_pretrained(output_path)
|
| 39 |
+
|
| 40 |
+
# Save tokenizer
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 42 |
+
tokenizer.save_pretrained(output_path)
|
| 43 |
+
|
| 44 |
+
return model, tokenizer
|
| 45 |
+
|
| 46 |
+
def create_gpt_oss_model_card(model_name, experiment_name, trackio_url, dataset_repo, author_name, model_description):
|
| 47 |
+
"""Create a comprehensive model card for GPT-OSS models"""
|
| 48 |
+
|
| 49 |
+
card_content = f"""---
|
| 50 |
+
language:
|
| 51 |
+
- en
|
| 52 |
+
- es
|
| 53 |
+
- fr
|
| 54 |
+
- it
|
| 55 |
+
- de
|
| 56 |
+
- zh
|
| 57 |
+
- hi
|
| 58 |
+
- ja
|
| 59 |
+
- ko
|
| 60 |
+
- ar
|
| 61 |
+
license: mit
|
| 62 |
+
tags:
|
| 63 |
+
- gpt-oss
|
| 64 |
+
- multilingual
|
| 65 |
+
- reasoning
|
| 66 |
+
- chain-of-thought
|
| 67 |
+
- fine-tuned
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
# {model_name}
|
| 71 |
+
|
| 72 |
+
## Model Description
|
| 73 |
+
|
| 74 |
+
{model_description}
|
| 75 |
+
|
| 76 |
+
This model is a fine-tuned version of OpenAI's GPT-OSS-20B model, optimized for multilingual reasoning tasks. It has been trained on the Multilingual-Thinking dataset to generate chain-of-thought reasoning in multiple languages.
|
| 77 |
+
|
| 78 |
+
## Training Details
|
| 79 |
+
|
| 80 |
+
- **Base Model**: openai/gpt-oss-20b
|
| 81 |
+
- **Training Dataset**: HuggingFaceH4/Multilingual-Thinking
|
| 82 |
+
- **Training Method**: LoRA (Low-Rank Adaptation)
|
| 83 |
+
- **Quantization**: MXFP4
|
| 84 |
+
- **Experiment**: {experiment_name}
|
| 85 |
+
- **Monitoring**: {trackio_url}
|
| 86 |
+
|
| 87 |
+
## Usage
|
| 88 |
+
|
| 89 |
+
### Basic Usage
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 93 |
+
|
| 94 |
+
# Load model and tokenizer
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained("{model_name}")
|
| 96 |
+
model = AutoModelForCausalLM.from_pretrained("{model_name}")
|
| 97 |
+
|
| 98 |
+
# Example: Reasoning in Spanish
|
| 99 |
+
messages = [
|
| 100 |
+
{{"role": "system", "content": "reasoning language: Spanish"}},
|
| 101 |
+
{{"role": "user", "content": "What is the capital of Australia?"}}
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
input_ids = tokenizer.apply_chat_template(
|
| 105 |
+
messages,
|
| 106 |
+
add_generation_prompt=True,
|
| 107 |
+
return_tensors="pt"
|
| 108 |
+
).to(model.device)
|
| 109 |
+
|
| 110 |
+
output_ids = model.generate(input_ids, max_new_tokens=512)
|
| 111 |
+
response = tokenizer.batch_decode(output_ids)[0]
|
| 112 |
+
print(response)
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
### Multilingual Reasoning
|
| 116 |
+
|
| 117 |
+
The model supports reasoning in multiple languages:
|
| 118 |
+
|
| 119 |
+
- English
|
| 120 |
+
- Spanish (Español)
|
| 121 |
+
- French (Français)
|
| 122 |
+
- Italian (Italiano)
|
| 123 |
+
- German (Deutsch)
|
| 124 |
+
- Chinese (中文)
|
| 125 |
+
- Hindi (हिन्दी)
|
| 126 |
+
- Japanese (日本語)
|
| 127 |
+
- Korean (한국어)
|
| 128 |
+
- Arabic (العربية)
|
| 129 |
+
|
| 130 |
+
### System Prompt Format
|
| 131 |
+
|
| 132 |
+
To control the reasoning language, use the system prompt:
|
| 133 |
+
|
| 134 |
+
```
|
| 135 |
+
reasoning language: [LANGUAGE]
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
Example:
|
| 139 |
+
```
|
| 140 |
+
reasoning language: German
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
## Training Configuration
|
| 144 |
+
|
| 145 |
+
- **LoRA Rank**: 8
|
| 146 |
+
- **LoRA Alpha**: 16
|
| 147 |
+
- **Target Modules**: all-linear
|
| 148 |
+
- **Learning Rate**: 2e-4
|
| 149 |
+
- **Batch Size**: 4
|
| 150 |
+
- **Sequence Length**: 2048
|
| 151 |
+
- **Mixed Precision**: bf16
|
| 152 |
+
|
| 153 |
+
## Dataset Information
|
| 154 |
+
|
| 155 |
+
The model was trained on the Multilingual-Thinking dataset, which contains 1,000 examples of chain-of-thought reasoning translated into multiple languages.
|
| 156 |
+
|
| 157 |
+
## Limitations
|
| 158 |
+
|
| 159 |
+
- The model is designed for reasoning tasks and may not perform optimally on other tasks
|
| 160 |
+
- Reasoning quality may vary across languages
|
| 161 |
+
- The model inherits limitations from the base GPT-OSS-20B model
|
| 162 |
+
|
| 163 |
+
## Citation
|
| 164 |
+
|
| 165 |
+
If you use this model in your research, please cite:
|
| 166 |
+
|
| 167 |
+
```bibtex
|
| 168 |
+
@misc{{{model_name.replace("/", "_").replace("-", "_")},
|
| 169 |
+
author = {{{author_name}}},
|
| 170 |
+
title = {{{model_name}}},
|
| 171 |
+
year = {{{datetime.now().year}}},
|
| 172 |
+
publisher = {Hugging Face},
|
| 173 |
+
journal = {Hugging Face repository},
|
| 174 |
+
howpublished = {{\\url{{https://huggingface.co/{model_name}}}}}
|
| 175 |
+
}}
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
## License
|
| 179 |
+
|
| 180 |
+
This model is licensed under the MIT License.
|
| 181 |
+
|
| 182 |
+
## Training Resources
|
| 183 |
+
|
| 184 |
+
- **Training Dataset**: https://huggingface.co/datasets/{dataset_repo}
|
| 185 |
+
- **Training Monitoring**: {trackio_url}
|
| 186 |
+
- **Base Model**: https://huggingface.co/openai/gpt-oss-20b
|
| 187 |
+
|
| 188 |
+
## Model Information
|
| 189 |
+
|
| 190 |
+
- **Architecture**: GPT-OSS-20B with LoRA adapters
|
| 191 |
+
- **Parameters**: 20B base + LoRA adapters
|
| 192 |
+
- **Context Length**: 2048 tokens
|
| 193 |
+
- **Languages**: 10+ languages supported
|
| 194 |
+
- **Task**: Multilingual reasoning and chain-of-thought generation
|
| 195 |
+
"""
|
| 196 |
+
|
| 197 |
+
return card_content
|
| 198 |
+
|
| 199 |
+
def push_gpt_oss_model(checkpoint_path, repo_name, hf_token, trackio_url, experiment_name, dataset_repo, author_name, model_description):
|
| 200 |
+
"""Push GPT-OSS model to Hugging Face Hub"""
|
| 201 |
+
|
| 202 |
+
print("=== GPT-OSS Model Push Pipeline ===")
|
| 203 |
+
print(f"Checkpoint: {checkpoint_path}")
|
| 204 |
+
print(f"Repository: {repo_name}")
|
| 205 |
+
print(f"Experiment: {experiment_name}")
|
| 206 |
+
print(f"Author: {author_name}")
|
| 207 |
+
|
| 208 |
+
# Validate checkpoint path
|
| 209 |
+
if not os.path.exists(checkpoint_path):
|
| 210 |
+
raise FileNotFoundError(f"Checkpoint path not found: {checkpoint_path}")
|
| 211 |
+
|
| 212 |
+
# Create temporary directory for merged model
|
| 213 |
+
temp_output = f"/tmp/gpt_oss_merged_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
| 214 |
+
os.makedirs(temp_output, exist_ok=True)
|
| 215 |
+
|
| 216 |
+
try:
|
| 217 |
+
# Merge LoRA weights with base model
|
| 218 |
+
print("Merging LoRA weights with base model...")
|
| 219 |
+
model, tokenizer = merge_lora_weights(
|
| 220 |
+
checkpoint_path=checkpoint_path,
|
| 221 |
+
base_model_name="openai/gpt-oss-20b",
|
| 222 |
+
output_path=temp_output
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# Create model card
|
| 226 |
+
print("Creating model card...")
|
| 227 |
+
model_card_content = create_gpt_oss_model_card(
|
| 228 |
+
model_name=repo_name,
|
| 229 |
+
experiment_name=experiment_name,
|
| 230 |
+
trackio_url=trackio_url,
|
| 231 |
+
dataset_repo=dataset_repo,
|
| 232 |
+
author_name=author_name,
|
| 233 |
+
model_description=model_description
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Save model card
|
| 237 |
+
model_card_path = os.path.join(temp_output, "README.md")
|
| 238 |
+
with open(model_card_path, "w", encoding="utf-8") as f:
|
| 239 |
+
f.write(model_card_content)
|
| 240 |
+
|
| 241 |
+
# Push to Hugging Face Hub
|
| 242 |
+
print(f"Pushing model to: {repo_name}")
|
| 243 |
+
|
| 244 |
+
# Set HF token
|
| 245 |
+
os.environ["HUGGING_FACE_HUB_TOKEN"] = hf_token
|
| 246 |
+
|
| 247 |
+
# Push using transformers
|
| 248 |
+
from huggingface_hub import HfApi
|
| 249 |
+
api = HfApi()
|
| 250 |
+
|
| 251 |
+
# Create repository if it doesn't exist
|
| 252 |
+
try:
|
| 253 |
+
api.create_repo(repo_name, private=False, exist_ok=True)
|
| 254 |
+
except Exception as e:
|
| 255 |
+
print(f"Warning: Could not create repository: {e}")
|
| 256 |
+
|
| 257 |
+
# Upload files
|
| 258 |
+
print("Uploading model files...")
|
| 259 |
+
api.upload_folder(
|
| 260 |
+
folder_path=temp_output,
|
| 261 |
+
repo_id=repo_name,
|
| 262 |
+
repo_type="model"
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
print("✅ GPT-OSS model pushed successfully!")
|
| 266 |
+
print(f"Model URL: https://huggingface.co/{repo_name}")
|
| 267 |
+
|
| 268 |
+
# Clean up
|
| 269 |
+
import shutil
|
| 270 |
+
shutil.rmtree(temp_output)
|
| 271 |
+
|
| 272 |
+
return True
|
| 273 |
+
|
| 274 |
+
except Exception as e:
|
| 275 |
+
print(f"❌ Error pushing GPT-OSS model: {e}")
|
| 276 |
+
|
| 277 |
+
# Clean up on error
|
| 278 |
+
if os.path.exists(temp_output):
|
| 279 |
+
import shutil
|
| 280 |
+
shutil.rmtree(temp_output)
|
| 281 |
+
|
| 282 |
+
return False
|
| 283 |
+
|
| 284 |
+
def main():
|
| 285 |
+
parser = argparse.ArgumentParser(description="Push GPT-OSS model to Hugging Face Hub")
|
| 286 |
+
parser.add_argument("checkpoint_path", help="Path to model checkpoint")
|
| 287 |
+
parser.add_argument("repo_name", help="Hugging Face repository name")
|
| 288 |
+
parser.add_argument("--token", required=True, help="Hugging Face token")
|
| 289 |
+
parser.add_argument("--trackio-url", help="Trackio URL for model card")
|
| 290 |
+
parser.add_argument("--experiment-name", help="Experiment name")
|
| 291 |
+
parser.add_argument("--dataset-repo", help="Dataset repository")
|
| 292 |
+
parser.add_argument("--author-name", help="Author name")
|
| 293 |
+
parser.add_argument("--model-description", help="Model description")
|
| 294 |
+
|
| 295 |
+
args = parser.parse_args()
|
| 296 |
+
|
| 297 |
+
# Set defaults
|
| 298 |
+
experiment_name = args.experiment_name or "gpt_oss_finetune"
|
| 299 |
+
dataset_repo = args.dataset_repo or "HuggingFaceH4/Multilingual-Thinking"
|
| 300 |
+
author_name = args.author_name or "GPT-OSS Fine-tuner"
|
| 301 |
+
model_description = args.model_description or "A fine-tuned version of OpenAI's GPT-OSS-20B model for multilingual reasoning tasks."
|
| 302 |
+
|
| 303 |
+
success = push_gpt_oss_model(
|
| 304 |
+
checkpoint_path=args.checkpoint_path,
|
| 305 |
+
repo_name=args.repo_name,
|
| 306 |
+
hf_token=args.token,
|
| 307 |
+
trackio_url=args.trackio_url,
|
| 308 |
+
experiment_name=experiment_name,
|
| 309 |
+
dataset_repo=dataset_repo,
|
| 310 |
+
author_name=author_name,
|
| 311 |
+
model_description=model_description
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
sys.exit(0 if success else 1)
|
| 315 |
+
|
| 316 |
+
if __name__ == "__main__":
|
| 317 |
+
main()
|
scripts/training/train_gpt_oss.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
GPT-OSS Training Script
|
| 4 |
+
Specialized training script for OpenAI's GPT-OSS models
|
| 5 |
+
Based on the GPT-OSS fine-tuning tutorial
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import argparse
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 13 |
+
from peft import LoraConfig, get_peft_model
|
| 14 |
+
from trl import SFTTrainer, SFTConfig
|
| 15 |
+
import trackio
|
| 16 |
+
from datasets import load_dataset
|
| 17 |
+
|
| 18 |
+
def load_gpt_oss_model_and_tokenizer(config):
|
| 19 |
+
"""Load GPT-OSS model and tokenizer with proper configuration"""
|
| 20 |
+
|
| 21 |
+
print("Loading GPT-OSS tokenizer...")
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
|
| 23 |
+
|
| 24 |
+
print("Loading GPT-OSS model with quantization...")
|
| 25 |
+
|
| 26 |
+
# Import quantization config
|
| 27 |
+
from transformers import Mxfp4Config
|
| 28 |
+
|
| 29 |
+
# Set up quantization config
|
| 30 |
+
quantization_config = Mxfp4Config(dequantize=True)
|
| 31 |
+
|
| 32 |
+
# Model kwargs as per tutorial
|
| 33 |
+
model_kwargs = {
|
| 34 |
+
"attn_implementation": "eager",
|
| 35 |
+
"torch_dtype": torch.bfloat16,
|
| 36 |
+
"quantization_config": quantization_config,
|
| 37 |
+
"use_cache": False,
|
| 38 |
+
"device_map": "auto",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained(config.model_name, **model_kwargs)
|
| 42 |
+
|
| 43 |
+
return model, tokenizer
|
| 44 |
+
|
| 45 |
+
def setup_lora_for_gpt_oss(model, config):
|
| 46 |
+
"""Setup LoRA for GPT-OSS model"""
|
| 47 |
+
|
| 48 |
+
print("Setting up LoRA for GPT-OSS...")
|
| 49 |
+
|
| 50 |
+
# LoRA configuration as per tutorial
|
| 51 |
+
lora_config = LoraConfig(
|
| 52 |
+
r=config.lora_config.get("r", 8),
|
| 53 |
+
lora_alpha=config.lora_config.get("lora_alpha", 16),
|
| 54 |
+
target_modules=config.lora_config.get("target_modules", "all-linear"),
|
| 55 |
+
target_parameters=config.lora_config.get("target_parameters", [
|
| 56 |
+
"7.mlp.experts.gate_up_proj",
|
| 57 |
+
"7.mlp.experts.down_proj",
|
| 58 |
+
"15.mlp.experts.gate_up_proj",
|
| 59 |
+
"15.mlp.experts.down_proj",
|
| 60 |
+
"23.mlp.experts.gate_up_proj",
|
| 61 |
+
"23.mlp.experts.down_proj",
|
| 62 |
+
]),
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
peft_model = get_peft_model(model, lora_config)
|
| 66 |
+
peft_model.print_trainable_parameters()
|
| 67 |
+
|
| 68 |
+
return peft_model
|
| 69 |
+
|
| 70 |
+
def load_multilingual_thinking_dataset():
|
| 71 |
+
"""Load the Multilingual-Thinking dataset"""
|
| 72 |
+
|
| 73 |
+
print("Loading Multilingual-Thinking dataset...")
|
| 74 |
+
dataset = load_dataset("HuggingFaceH4/Multilingual-Thinking", split="train")
|
| 75 |
+
print(f"Dataset loaded: {len(dataset)} examples")
|
| 76 |
+
|
| 77 |
+
return dataset
|
| 78 |
+
|
| 79 |
+
def setup_trackio_tracking(config):
|
| 80 |
+
"""Setup Trackio tracking if enabled"""
|
| 81 |
+
|
| 82 |
+
if not config.enable_tracking or not config.trackio_url:
|
| 83 |
+
print("Trackio tracking disabled or URL not provided")
|
| 84 |
+
return None
|
| 85 |
+
|
| 86 |
+
print(f"Setting up Trackio tracking: {config.trackio_url}")
|
| 87 |
+
|
| 88 |
+
# Initialize Trackio client
|
| 89 |
+
trackio_client = trackio.Client(
|
| 90 |
+
api_url=config.trackio_url,
|
| 91 |
+
token=config.trackio_token
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
return trackio_client
|
| 95 |
+
|
| 96 |
+
def create_sft_config(config):
|
| 97 |
+
"""Create SFTConfig for GPT-OSS training"""
|
| 98 |
+
|
| 99 |
+
print("Creating SFT configuration...")
|
| 100 |
+
|
| 101 |
+
sft_config = SFTConfig(
|
| 102 |
+
learning_rate=config.learning_rate,
|
| 103 |
+
gradient_checkpointing=True,
|
| 104 |
+
num_train_epochs=1, # Single epoch as per tutorial
|
| 105 |
+
logging_steps=config.logging_steps,
|
| 106 |
+
per_device_train_batch_size=config.batch_size,
|
| 107 |
+
gradient_accumulation_steps=config.gradient_accumulation_steps,
|
| 108 |
+
max_length=config.max_seq_length,
|
| 109 |
+
warmup_ratio=0.03,
|
| 110 |
+
lr_scheduler_type="cosine_with_min_lr",
|
| 111 |
+
lr_scheduler_kwargs={"min_lr_rate": 0.1},
|
| 112 |
+
output_dir="gpt-oss-20b-multilingual-reasoner",
|
| 113 |
+
report_to="trackio" if config.enable_tracking else None,
|
| 114 |
+
push_to_hub=True,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
return sft_config
|
| 118 |
+
|
| 119 |
+
def train_gpt_oss(config_path, experiment_name, output_dir, trackio_url, trainer_type="sft"):
|
| 120 |
+
"""Main training function for GPT-OSS"""
|
| 121 |
+
|
| 122 |
+
print("=== GPT-OSS Training Pipeline ===")
|
| 123 |
+
print(f"Config: {config_path}")
|
| 124 |
+
print(f"Experiment: {experiment_name}")
|
| 125 |
+
print(f"Output: {output_dir}")
|
| 126 |
+
print(f"Trackio: {trackio_url}")
|
| 127 |
+
print(f"Trainer: {trainer_type}")
|
| 128 |
+
|
| 129 |
+
# Load configuration
|
| 130 |
+
if os.path.exists(config_path):
|
| 131 |
+
import importlib.util
|
| 132 |
+
spec = importlib.util.spec_from_file_location("config_module", config_path)
|
| 133 |
+
config_module = importlib.util.module_from_spec(spec)
|
| 134 |
+
spec.loader.exec_module(config_module)
|
| 135 |
+
|
| 136 |
+
if hasattr(config_module, 'config'):
|
| 137 |
+
config = config_module.config
|
| 138 |
+
else:
|
| 139 |
+
# Try to find a config class
|
| 140 |
+
for attr_name in dir(config_module):
|
| 141 |
+
attr = getattr(config_module, attr_name)
|
| 142 |
+
if hasattr(attr, 'model_name') and 'gpt_oss' in attr.model_name.lower():
|
| 143 |
+
config = attr
|
| 144 |
+
break
|
| 145 |
+
else:
|
| 146 |
+
raise ValueError(f"No GPT-OSS configuration found in {config_path}")
|
| 147 |
+
else:
|
| 148 |
+
raise FileNotFoundError(f"Configuration file not found: {config_path}")
|
| 149 |
+
|
| 150 |
+
# Update config with runtime parameters
|
| 151 |
+
config.experiment_name = experiment_name
|
| 152 |
+
config.trackio_url = trackio_url
|
| 153 |
+
config.trainer_type = trainer_type
|
| 154 |
+
|
| 155 |
+
# Load model and tokenizer
|
| 156 |
+
model, tokenizer = load_gpt_oss_model_and_tokenizer(config)
|
| 157 |
+
|
| 158 |
+
# Setup LoRA
|
| 159 |
+
peft_model = setup_lora_for_gpt_oss(model, config)
|
| 160 |
+
|
| 161 |
+
# Load dataset
|
| 162 |
+
dataset = load_multilingual_thinking_dataset()
|
| 163 |
+
|
| 164 |
+
# Setup Trackio tracking
|
| 165 |
+
trackio_client = setup_trackio_tracking(config)
|
| 166 |
+
|
| 167 |
+
# Create SFT configuration
|
| 168 |
+
sft_config = create_sft_config(config)
|
| 169 |
+
|
| 170 |
+
# Create trainer
|
| 171 |
+
print("Creating SFT trainer...")
|
| 172 |
+
trainer = SFTTrainer(
|
| 173 |
+
model=peft_model,
|
| 174 |
+
args=sft_config,
|
| 175 |
+
train_dataset=dataset,
|
| 176 |
+
processing_class=tokenizer,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# Start training
|
| 180 |
+
print("Starting GPT-OSS training...")
|
| 181 |
+
trainer.train()
|
| 182 |
+
|
| 183 |
+
# Save model
|
| 184 |
+
print("Saving trained model...")
|
| 185 |
+
trainer.save_model(output_dir)
|
| 186 |
+
|
| 187 |
+
# Push to hub if enabled
|
| 188 |
+
if sft_config.push_to_hub:
|
| 189 |
+
print("Pushing model to Hugging Face Hub...")
|
| 190 |
+
trainer.push_to_hub(dataset_name="HuggingFaceH4/Multilingual-Thinking")
|
| 191 |
+
|
| 192 |
+
print("GPT-OSS training completed successfully!")
|
| 193 |
+
|
| 194 |
+
return trainer
|
| 195 |
+
|
| 196 |
+
def main():
|
| 197 |
+
parser = argparse.ArgumentParser(description="GPT-OSS Training Script")
|
| 198 |
+
parser.add_argument("--config", required=True, help="Path to configuration file")
|
| 199 |
+
parser.add_argument("--experiment-name", required=True, help="Experiment name")
|
| 200 |
+
parser.add_argument("--output-dir", required=True, help="Output directory for checkpoints")
|
| 201 |
+
parser.add_argument("--trackio-url", help="Trackio URL for monitoring")
|
| 202 |
+
parser.add_argument("--trainer-type", default="sft", choices=["sft", "dpo"], help="Trainer type")
|
| 203 |
+
|
| 204 |
+
args = parser.parse_args()
|
| 205 |
+
|
| 206 |
+
# Validate arguments
|
| 207 |
+
if not os.path.exists(args.config):
|
| 208 |
+
print(f"Error: Configuration file not found: {args.config}")
|
| 209 |
+
sys.exit(1)
|
| 210 |
+
|
| 211 |
+
# Create output directory
|
| 212 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 213 |
+
|
| 214 |
+
try:
|
| 215 |
+
train_gpt_oss(
|
| 216 |
+
config_path=args.config,
|
| 217 |
+
experiment_name=args.experiment_name,
|
| 218 |
+
output_dir=args.output_dir,
|
| 219 |
+
trackio_url=args.trackio_url,
|
| 220 |
+
trainer_type=args.trainer_type
|
| 221 |
+
)
|
| 222 |
+
except Exception as e:
|
| 223 |
+
print(f"Error during training: {e}")
|
| 224 |
+
sys.exit(1)
|
| 225 |
+
|
| 226 |
+
if __name__ == "__main__":
|
| 227 |
+
main()
|