Spaces:
Running
Running
File size: 32,048 Bytes
ebe598e 3c37508 ebe598e c417358 ebe598e c2321bb ebe598e c2321bb ebe598e 42f4411 ebe598e 40fd629 ebe598e 3c37508 ebe598e 3c37508 ebe598e 3c37508 c417358 ebe598e 3c37508 ebe598e 3c37508 ebe598e 5d7656c d291e63 c61ed6b d291e63 235d769 c61ed6b d291e63 235d769 d291e63 c61ed6b d291e63 235d769 d291e63 c61ed6b d291e63 ebe598e c61ed6b 40fd629 d7d1377 ebe598e 40fd629 ebe598e c417358 ebe598e 40fd629 ebe598e 5d7656c 39db0ca ebe598e ca1f1cd ebe598e fd0524b 3c37508 fd0524b ebe598e fd0524b 3c37508 fd0524b ebe598e fd0524b 3c37508 fd0524b 3c37508 fd0524b 93ed7a1 3c37508 93ed7a1 ebe598e 39db0ca c417358 ebe598e c417358 fd0524b 3c37508 fd0524b 40fd629 fd0524b 3c37508 ebe598e c417358 ebe598e c417358 fd0524b 3c37508 fd0524b ebe598e c417358 ebe598e c417358 fd0524b 3c37508 fd0524b ebe598e 93ed7a1 ebe598e 93ed7a1 ebe598e 93ed7a1 769bb84 ebe598e 769bb84 ebe598e 93ed7a1 ebe598e 93ed7a1 ebe598e 93ed7a1 fd0524b 3c37508 fd0524b 93ed7a1 40fd629 d7d1377 ebe598e 93ed7a1 769bb84 fd0524b 3c37508 fd0524b 93ed7a1 ebe598e 39db0ca ebe598e 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 40fd629 3c37508 ebe598e 40fd629 3c37508 ebe598e 3c37508 40fd629 ebe598e 3c37508 40fd629 ebe598e 3c37508 ebe598e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
#!/bin/bash
# Interactive SmolLM3 End-to-End Fine-tuning Pipeline
# This script creates a complete finetuning pipeline with user configuration
set -e # Exit on any error
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
PURPLE='\033[0;35m'
CYAN='\033[0;36m'
NC='\033[0m' # No Color
# Function to print colored output
print_status() {
echo -e "${GREEN}โ
$1${NC}"
}
print_warning() {
echo -e "${YELLOW}โ ๏ธ $1${NC}"
}
print_error() {
echo -e "${RED}โ $1${NC}"
}
print_info() {
echo -e "${BLUE}โน๏ธ $1${NC}"
}
print_header() {
echo -e "${PURPLE}๐ $1${NC}"
}
print_step() {
echo -e "${CYAN}๐ $1${NC}"
}
# Function to get user input with default value
get_input() {
local prompt="$1"
local default="$2"
local var_name="$3"
if [ -n "$default" ]; then
read -p "$prompt [$default]: " input
if [ -z "$input" ]; then
input="$default"
fi
else
read -p "$prompt: " input
while [ -z "$input" ]; do
print_error "This field is required!"
read -p "$prompt: " input
done
fi
eval "$var_name=\"$input\""
}
# Function to get secure token input (hidden with stars)
get_secure_token_input() {
local prompt="$1"
local var_name="$2"
local token_type="$3"
echo -n "$prompt: "
# Use -s flag to hide input, -r to not interpret backslashes
read -s -r input
echo # Add newline after hidden input
# Validate that input is not empty
while [ -z "$input" ]; do
print_error "Token is required!"
echo -n "$prompt: "
read -s -r input
echo
done
# Store the token
eval "$var_name=\"$input\""
# Show confirmation with stars
local masked_token="${input:0:4}****${input: -4}"
print_status "$token_type token added: $masked_token"
}
# Function to select from options
select_option() {
local prompt="$1"
local options=("${@:2}")
local var_name="${!#}"
echo "$prompt"
for i in "${!options[@]}"; do
echo " $((i+1)). ${options[$i]}"
done
while true; do
read -p "Enter your choice (1-${#options[@]}): " choice
if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then
eval "$var_name=\"${options[$((choice-1))]}\""
break
else
print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}"
fi
done
}
# Function to validate HF token and get username
validate_hf_token_and_get_username() {
local token="$1"
if [ -z "$token" ]; then
return 1
fi
# Use Python script for validation
local result
if result=$(python3 scripts/validate_hf_token.py "$token" 2>/dev/null); then
# Parse JSON result using a more robust approach
local success=$(echo "$result" | python3 -c "
import sys, json
try:
data = json.load(sys.stdin)
print(data.get('success', False))
except:
print('False')
")
local username=$(echo "$result" | python3 -c "
import sys, json
try:
data = json.load(sys.stdin)
print(data.get('username', ''))
except:
print('')
")
local error=$(echo "$result" | python3 -c "
import sys, json
try:
data = json.load(sys.stdin)
print(data.get('error', 'Unknown error'))
except:
print('Failed to parse response')
")
if [ "$success" = "True" ] && [ -n "$username" ]; then
HF_USERNAME="$username"
return 0
else
print_error "Token validation failed: $error"
return 1
fi
else
print_error "Failed to run token validation script. Make sure huggingface_hub is installed."
return 1
fi
}
# Function to show training configurations
show_training_configs() {
echo ""
print_header "Available Training Configurations"
echo "======================================"
echo ""
echo "1. Basic Training (Default)"
echo " - Model: SmolLM3-3B"
echo " - Dataset: SmolTalk"
echo " - Epochs: 3"
echo " - Batch Size: 2"
echo " - Learning Rate: 5e-6"
echo ""
echo "2. H100 Lightweight (Rapid)"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR (80K samples)"
echo " - Epochs: 1"
echo " - Batch Size: 16"
echo " - Learning Rate: 8e-6"
echo " - Sequence Length: 8192"
echo " - Optimized for H100 rapid training"
echo ""
echo "3. A100 Large Scale"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR"
echo " - Epochs: 1.3 passes"
echo " - Batch Size: 8"
echo " - Learning Rate: 5e-6"
echo " - Sequence Length: 8192"
echo ""
echo "4. Multiple Passes"
echo " - Model: SmolLM3-3B"
echo " - Dataset: OpenHermes-FR"
echo " - Epochs: 4 passes"
echo " - Batch Size: 6"
echo " - Learning Rate: 3e-6"
echo " - Sequence Length: 8192"
echo ""
echo "5. Custom Configuration"
echo " - User-defined parameters"
echo ""
}
# Function to get training configuration
get_training_config() {
local config_type="$1"
case "$config_type" in
"Basic Training")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=3
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
LEARNING_RATE=5e-6
MAX_SEQ_LENGTH=4096
CONFIG_FILE="config/train_smollm3.py"
;;
"H100 Lightweight (Rapid)")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1
BATCH_SIZE=16
GRADIENT_ACCUMULATION_STEPS=4
LEARNING_RATE=8e-6
MAX_SEQ_LENGTH=8192
DATASET_SAMPLE_SIZE=80000
CONFIG_FILE="config/train_smollm3_h100_lightweight.py"
;;
"A100 Large Scale")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=1
BATCH_SIZE=8
GRADIENT_ACCUMULATION_STEPS=16
LEARNING_RATE=5e-6
MAX_SEQ_LENGTH=8192
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py"
;;
"Multiple Passes")
MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
DATASET_NAME="legmlai/openhermes-fr"
MAX_EPOCHS=4
BATCH_SIZE=6
GRADIENT_ACCUMULATION_STEPS=20
LEARNING_RATE=3e-6
MAX_SEQ_LENGTH=8192
CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py"
;;
"Custom Configuration")
get_custom_config
;;
esac
}
# Function to get custom configuration
get_custom_config() {
print_step "Custom Configuration Setup"
echo "============================="
get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME
get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME
get_input "Number of epochs" "3" MAX_EPOCHS
get_input "Batch size" "2" BATCH_SIZE
get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS
get_input "Learning rate" "5e-6" LEARNING_RATE
get_input "Max sequence length" "4096" MAX_SEQ_LENGTH
# Select config file based on dataset
if [[ "$DATASET_NAME" == *"openhermes"* ]]; then
CONFIG_FILE="config/train_smollm3_openhermes_fr.py"
else
CONFIG_FILE="config/train_smollm3.py"
fi
}
# Function to create training configuration file
create_training_config() {
local config_file="$1"
cat > "$config_file" << EOF
"""
SmolLM3 Training Configuration - Generated by launch.sh
Optimized for: $TRAINING_CONFIG_TYPE
"""
from config.train_smollm3 import SmolLM3Config
config = SmolLM3Config(
# Trainer type selection
trainer_type="$TRAINER_TYPE",
# Model configuration
model_name="$MODEL_NAME",
max_seq_length=$MAX_SEQ_LENGTH,
use_flash_attention=True,
use_gradient_checkpointing=True,
# Training configuration
batch_size=$BATCH_SIZE,
gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS,
learning_rate=$LEARNING_RATE,
weight_decay=0.01,
warmup_steps=100,
max_iters=None, # Will be calculated based on epochs
eval_interval=100,
log_interval=10,
save_interval=500,
# Optimizer configuration
optimizer="adamw",
beta1=0.9,
beta2=0.95,
eps=1e-8,
# Scheduler configuration
scheduler="cosine",
min_lr=1e-6,
# Mixed precision
fp16=True,
bf16=False,
# Logging and saving
save_steps=$SAVE_STEPS,
eval_steps=$EVAL_STEPS,
logging_steps=$LOGGING_STEPS,
save_total_limit=3,
# Evaluation
eval_strategy="steps",
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
# Data configuration
dataset_name="$DATASET_NAME",
dataset_split="train",
input_field="prompt",
target_field="completion",
filter_bad_entries=False,
bad_entry_field="bad_entry",
# Chat template configuration
use_chat_template=True,
chat_template_kwargs={
"enable_thinking": False,
"add_generation_prompt": True,
"no_think_system_message": True
},
# Trackio monitoring configuration
enable_tracking=True,
trackio_url="$TRACKIO_URL",
trackio_token=None,
log_artifacts=True,
log_metrics=True,
log_config=True,
experiment_name="$EXPERIMENT_NAME",
# HF Datasets configuration
dataset_repo="$TRACKIO_DATASET_REPO"
)
EOF
}
# Main script starts here
print_header "SmolLM3 End-to-End Fine-tuning Pipeline"
echo "=============================================="
echo ""
# Step 1: Get user credentials (write and read tokens)
print_step "Step 1: User Authentication"
echo "================================"
print_info "You'll need two Hugging Face tokens:"
echo "1. Write Token - Used during training for creating repositories and pushing models"
echo "2. Read Token - Used in Trackio Space after training for security"
echo ""
print_info "Getting Write Token (for training operations)..."
get_secure_token_input "Enter your Hugging Face WRITE token (get from https://huggingface.co/settings/tokens)" HF_WRITE_TOKEN "Write"
print_info "Getting Read Token (for Trackio Space security)..."
get_secure_token_input "Enter your Hugging Face READ token (get from https://huggingface.co/settings/tokens)" HF_READ_TOKEN "Read"
# Validate write token and get username automatically
print_info "Validating write token and getting username..."
if validate_hf_token_and_get_username "$HF_WRITE_TOKEN"; then
print_status "Write token validated successfully"
print_info "Username: $HF_USERNAME"
else
print_error "Invalid write token. Please check your token and try again."
exit 1
fi
# Validate read token belongs to same user
print_info "Validating read token..."
if validate_hf_token_and_get_username "$HF_READ_TOKEN"; then
READ_USERNAME="$HF_USERNAME"
if [ "$READ_USERNAME" = "$HF_USERNAME" ]; then
print_status "Read token validated successfully"
print_info "Both tokens belong to user: $HF_USERNAME"
else
print_error "Token mismatch: write token user ($HF_USERNAME) != read token user ($READ_USERNAME)"
print_error "Both tokens must belong to the same user"
exit 1
fi
else
print_error "Invalid read token. Please check your token and try again."
exit 1
fi
# Set the main HF_TOKEN to write token for training operations
HF_TOKEN="$HF_WRITE_TOKEN"
# Step 2: Select training configuration
print_step "Step 2: Training Configuration"
echo "=================================="
show_training_configs
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "Custom Configuration" TRAINING_CONFIG_TYPE
get_training_config "$TRAINING_CONFIG_TYPE"
# Step 3: Get experiment details
print_step "Step 3: Experiment Details"
echo "=============================="
get_input "Experiment name" "smollm3_finetune_$(date +%Y%m%d_%H%M%S)" EXPERIMENT_NAME
# Automatically generate model repository name
print_info "Setting up model repository automatically..."
REPO_NAME="$HF_USERNAME/smollm3-finetuned-$(date +%Y%m%d)"
print_status "Model repository: $REPO_NAME"
# Automatically create dataset repository
print_info "Setting up Trackio dataset repository automatically..."
# Set default dataset repository
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
# Ask if user wants to customize dataset name
echo ""
echo "Dataset repository options:"
echo "1. Use default name (trackio-experiments)"
echo "2. Customize dataset name"
echo ""
read -p "Choose option (1/2): " dataset_option
if [ "$dataset_option" = "2" ]; then
get_input "Custom dataset name (without username)" "trackio-experiments" CUSTOM_DATASET_NAME
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" "$CUSTOM_DATASET_NAME" 2>/dev/null; then
# Update with the actual repository name from the script
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
print_status "Custom dataset repository created successfully"
else
print_warning "Custom dataset creation failed, using default"
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
print_status "Default dataset repository created successfully"
else
print_warning "Automatic dataset creation failed, using default"
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
fi
fi
else
if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then
TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
print_status "Dataset repository created successfully"
else
print_warning "Automatic dataset creation failed, using default"
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
fi
fi
# Ensure TRACKIO_DATASET_REPO is always set
if [ -z "$TRACKIO_DATASET_REPO" ]; then
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
print_warning "Dataset repository not set, using default: $TRACKIO_DATASET_REPO"
fi
# Step 3.5: Select trainer type
print_step "Step 3.5: Trainer Type Selection"
echo "===================================="
echo "Select the type of training to perform:"
echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning"
echo " - Uses SFTTrainer for instruction following"
echo " - Suitable for most fine-tuning tasks"
echo " - Optimized for instruction datasets"
echo ""
echo "2. DPO (Direct Preference Optimization) - Preference-based training"
echo " - Uses DPOTrainer for preference learning"
echo " - Requires preference datasets (chosen/rejected pairs)"
echo " - Optimizes for human preferences"
echo ""
select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE
# Convert trainer type to lowercase for the training script
TRAINER_TYPE_LOWER=$(echo "$TRAINER_TYPE" | tr '[:upper:]' '[:lower:]')
# Step 4: Training parameters
print_step "Step 4: Training Parameters"
echo "==============================="
echo "Current configuration:"
echo " Model: $MODEL_NAME"
echo " Dataset: $DATASET_NAME"
echo " Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo " Epochs: $MAX_EPOCHS"
echo " Batch Size: $BATCH_SIZE"
echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS"
echo " Learning Rate: $LEARNING_RATE"
echo " Sequence Length: $MAX_SEQ_LENGTH"
get_input "Save steps" "500" SAVE_STEPS
get_input "Evaluation steps" "100" EVAL_STEPS
get_input "Logging steps" "10" LOGGING_STEPS
# Step 5: Trackio Space configuration
print_step "Step 5: Trackio Space Configuration"
echo "======================================"
get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"
# Step 6: Confirm configuration
print_step "Step 6: Configuration Summary"
echo "================================="
echo ""
echo "๐ Configuration Summary:"
echo "========================"
echo " User: $HF_USERNAME (auto-detected from token)"
echo " Experiment: $EXPERIMENT_NAME"
echo " Model: $MODEL_NAME"
echo " Dataset: $DATASET_NAME"
echo " Training Config: $TRAINING_CONFIG_TYPE"
echo " Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo " Epochs: $MAX_EPOCHS"
echo " Batch Size: $BATCH_SIZE"
echo " Learning Rate: $LEARNING_RATE"
echo " Model Repo: $REPO_NAME (auto-generated)"
echo " Author: $AUTHOR_NAME"
echo " Trackio Space: $TRACKIO_URL"
echo " HF Dataset: $TRACKIO_DATASET_REPO"
echo ""
read -p "Proceed with this configuration? (y/N): " confirm
if [[ ! "$confirm" =~ ^[Yy]$ ]]; then
print_info "Configuration cancelled. Exiting."
exit 0
fi
# Step 7: Environment setup
print_step "Step 7: Environment Setup"
echo "============================"
print_info "Installing system dependencies..."
# Check if we're already root or if sudo is available
if [ "$EUID" -eq 0 ]; then
# Already root, no need for sudo
print_info "Running as root, skipping sudo..."
apt-get update
apt-get install -y git curl wget unzip python3-pip python3-venv
elif command -v sudo >/dev/null 2>&1; then
# sudo is available, use it
print_info "Using sudo for system dependencies..."
sudo apt-get update
sudo apt-get install -y git curl wget unzip python3-pip python3-venv
else
# No sudo available, try without it
print_warning "sudo not available, attempting to install without sudo..."
if command -v apt-get >/dev/null 2>&1; then
apt-get update
apt-get install -y git curl wget unzip python3-pip python3-venv
else
print_warning "apt-get not available, skipping system dependencies..."
print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed"
fi
fi
# Set environment variables before creating virtual environment
print_info "Setting up environment variables..."
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
print_info "Creating Python virtual environment..."
python3 -m venv smollm3_env
source smollm3_env/bin/activate
# Re-export environment variables in the virtual environment
print_info "Configuring environment variables in virtual environment..."
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
print_info "Installing PyTorch with CUDA support..."
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
print_info "Installing project dependencies..."
pip install -r requirements/requirements_core.txt
print_info "Installing additional dependencies..."
pip install trl>=0.7.0
pip install peft>=0.4.0
pip install accelerate>=0.20.0
pip install huggingface-hub>=0.16.0
pip install datasets>=2.14.0
pip install requests>=2.31.0
# Step 8: Authentication setup
print_step "Step 8: Authentication Setup"
echo "================================"
print_info "Setting up Hugging Face token for Python API..."
print_status "HF token configured for Python API usage"
print_info "Username: $HF_USERNAME (auto-detected from token)"
print_info "Token available in environment: ${HF_TOKEN:0:10}...${HF_TOKEN: -4}"
# Verify tokens are available in the virtual environment
print_info "Verifying token availability in virtual environment..."
if [ -n "$HF_WRITE_TOKEN" ] && [ -n "$HF_READ_TOKEN" ] && [ -n "$HUGGING_FACE_HUB_TOKEN" ]; then
print_status "โ
Tokens properly configured in virtual environment"
print_info " HF_WRITE_TOKEN: ${HF_WRITE_TOKEN:0:10}...${HF_WRITE_TOKEN: -4}"
print_info " HF_READ_TOKEN: ${HF_READ_TOKEN:0:10}...${HF_READ_TOKEN: -4}"
print_info " HUGGING_FACE_HUB_TOKEN: ${HUGGING_FACE_HUB_TOKEN:0:10}...${HUGGING_FACE_HUB_TOKEN: -4}"
else
print_error "โ Tokens not properly configured in virtual environment"
print_error "Please check your tokens and try again"
exit 1
fi
# Configure git for HF operations
print_step "Step 8.1: Git Configuration"
echo "================================"
print_info "Configuring git for Hugging Face operations..."
# Get user's email for git configuration
get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL
# Configure git locally (not globally) for this project
git config user.email "$GIT_EMAIL"
git config user.name "$HF_USERNAME"
# Verify git configuration
print_info "Verifying git configuration..."
if git config user.email && git config user.name; then
print_status "Git configured successfully"
print_info " Email: $(git config user.email)"
print_info " Name: $(git config user.name)"
else
print_error "Failed to configure git"
exit 1
fi
# Step 8.2: Author Information for Model Card
print_step "Step 8.2: Author Information"
echo "================================="
print_info "This information will be used in the model card and citation."
get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME
print_info "Model description will be used in the model card and repository."
get_input "Model description" "A fine-tuned version of SmolLM3-3B for improved french language text generation and conversation capabilities." MODEL_DESCRIPTION
# Step 9: Deploy Trackio Space (automated)
print_step "Step 9: Deploying Trackio Space"
echo "==================================="
cd scripts/trackio_tonic
print_info "Deploying Trackio Space ..."
print_info "Space name: $TRACKIO_SPACE_NAME"
print_info "Username will be auto-detected from token"
print_info "Secrets will be set automatically via API"
# Ensure environment variables are available for the script
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
# Run deployment script with automated features
python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$HF_TOKEN" "$GIT_EMAIL" "$HF_USERNAME" "$TRACKIO_DATASET_REPO"
print_status "Trackio Space deployed: $TRACKIO_URL"
# Step 10: Setup HF Dataset (automated)
print_step "Step 10: Setting up HF Dataset"
echo "=================================="
cd ../dataset_tonic
print_info "Setting up HF Dataset with automated features..."
print_info "Username will be auto-detected from token"
print_info "Dataset repository: $TRACKIO_DATASET_REPO"
# Ensure environment variables are available for the script
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
python setup_hf_dataset.py "$HF_TOKEN"
# Step 11: Configure Trackio (automated)
print_step "Step 11: Configuring Trackio"
echo "================================="
cd ../trackio_tonic
print_info "Configuring Trackio ..."
print_info "Username will be auto-detected from token"
# Ensure environment variables are available for the script
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
python configure_trackio.py
# Step 12: Training Configuration
print_step "Step 12: Training Configuration"
echo "==================================="
cd ../..
print_info "Using existing configuration file: $CONFIG_FILE"
# Step 13: Dataset Configuration
print_step "Step 13: Dataset Configuration"
echo "=================================="
print_info "Dataset will be loaded directly by src/data.py during training"
print_info "Dataset: $DATASET_NAME"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)"
fi
# Step 14: Training Parameters
print_step "Step 14: Training Parameters"
echo "================================"
print_info "Training parameters will be loaded from configuration file"
print_info "Model: $MODEL_NAME"
print_info "Dataset: $DATASET_NAME"
print_info "Batch size: $BATCH_SIZE"
print_info "Learning rate: $LEARNING_RATE"
# Step 15: Start training
print_step "Step 15: Starting Training"
echo "=============================="
print_info "Starting training with configuration: $CONFIG_FILE"
print_info "Experiment: $EXPERIMENT_NAME"
print_info "Output: /output-checkpoint"
print_info "Trackio: $TRACKIO_URL"
# Ensure environment variables are available for training
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
# Run the simpler training script
python scripts/training/train.py \
--config "$CONFIG_FILE" \
--experiment-name "$EXPERIMENT_NAME" \
--output-dir /output-checkpoint \
--trackio-url "$TRACKIO_URL" \
--trainer-type "$TRAINER_TYPE_LOWER"
# Step 16: Push model to Hugging Face Hub
print_step "Step 16: Pushing Model to HF Hub"
echo "====================================="
print_info "Pushing model to: $REPO_NAME"
print_info "Checkpoint: /output-checkpoint"
# Ensure environment variables are available for model push
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
# Run the push script
python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \
--token "$HF_TOKEN" \
--trackio-url "$TRACKIO_URL" \
--experiment-name "$EXPERIMENT_NAME" \
--dataset-repo "$TRACKIO_DATASET_REPO" \
--author-name "$AUTHOR_NAME" \
--model-description "$MODEL_DESCRIPTION"
# Step 16.5: Switch Trackio Space to Read Token (Security)
print_step "Step 16.5: Switching to Read Token for Security"
echo "===================================================="
print_info "Switching Trackio Space from write token to read token for security..."
print_info "This ensures the space can only read datasets, not write to repositories"
# Ensure environment variables are available for token switch
export HF_TOKEN="$HF_WRITE_TOKEN" # Use write token to update space
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
export HF_USERNAME="$HF_USERNAME"
# Switch to read token in Trackio Space
cd scripts/trackio_tonic
python switch_to_read_token.py "$HF_USERNAME/$TRACKIO_SPACE_NAME" "$HF_READ_TOKEN" "$HF_WRITE_TOKEN"
if [ $? -eq 0 ]; then
print_status "โ
Successfully switched Trackio Space to read token"
print_info "๐ Space now uses read-only permissions for security"
else
print_warning "โ ๏ธ Failed to switch to read token, but continuing with pipeline"
print_info "You can manually switch the token in your Space settings later"
fi
cd ../..
# Step 17: Deploy Demo Space
print_step "Step 17: Deploying Demo Space"
echo "=================================="
# Ask user if they want to deploy a demo space
get_input "Do you want to deploy a demo space to test your model? (y/n)" "y" "DEPLOY_DEMO"
if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
print_info "Deploying demo space for model testing..."
# Use main model for demo (no quantization)
DEMO_MODEL_ID="$REPO_NAME"
DEMO_SUBFOLDER=""
# Ensure environment variables are available for demo deployment
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
print_info "Deploying demo space for model: $DEMO_MODEL_ID"
print_info "Using subfolder: $DEMO_SUBFOLDER"
python scripts/deploy_demo_space.py \
--hf-token "$HF_TOKEN" \
--hf-username "$HF_USERNAME" \
--model-id "$DEMO_MODEL_ID" \
--subfolder "$DEMO_SUBFOLDER" \
--space-name "${REPO_NAME}-demo"
if [ $? -eq 0 ]; then
DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo"
print_status "โ
Demo space deployed successfully: $DEMO_SPACE_URL"
else
print_warning "โ ๏ธ Demo space deployment failed, but continuing with pipeline"
fi
else
print_info "Skipping demo space deployment"
fi
# Step 18: Create summary report
print_step "Step 18: Creating Summary Report"
echo "===================================="
cat > training_summary.md << EOF
# SmolLM3 Fine-tuning Summary
## Configuration
- **Model**: $MODEL_NAME
- **Dataset**: $DATASET_NAME
- **Experiment**: $EXPERIMENT_NAME
- **Repository**: $REPO_NAME
- **Trackio Space**: $TRACKIO_URL
- **HF Dataset**: $TRACKIO_DATASET_REPO
- **Training Config**: $TRAINING_CONFIG_TYPE
- **Trainer Type**: $TRAINER_TYPE
- **Security**: Dual token system (write + read tokens)
$(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}"
fi)
## Training Parameters
- **Batch Size**: $BATCH_SIZE
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS
- **Learning Rate**: $LEARNING_RATE
- **Max Epochs**: $MAX_EPOCHS
- **Sequence Length**: $MAX_SEQ_LENGTH
## Results
- **Model Repository**: https://huggingface.co/$REPO_NAME
- **Trackio Monitoring**: $TRACKIO_URL
- **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO
- **Security**: Trackio Space switched to read-only token for security
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "- **Demo Space**: https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo"
fi)
## Next Steps
1. Monitor training progress in your Trackio Space
2. Check the model repository on Hugging Face Hub
3. Use the model in your applications
4. Share your results with the community
## Files Created
- Training configuration: \`$CONFIG_FILE\`
- Model checkpoint: \`/output-checkpoint/\`
- Training logs: \`training.log\`
- Summary report: \`training_summary.md\`
EOF
print_status "Summary report saved to: training_summary.md"
# Final summary
echo ""
print_header "๐ End-to-End Pipeline Completed Successfully!"
echo "=================================================="
echo ""
echo "๐ Model: https://huggingface.co/$REPO_NAME"
echo "๐ Trackio: $TRACKIO_URL"
echo "๐ Experiment: $EXPERIMENT_NAME"
echo "๐ Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO"
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "๐ฎ Demo: https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo"
fi)
echo ""
echo "๐ Summary report saved to: training_summary.md"
echo ""
echo "๐ Next steps:"
echo "1. Monitor training progress in your Trackio Space"
echo "2. Check the model repository on Hugging Face Hub"
echo "3. Your Trackio Space is now secured with read-only permissions"
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "3. Make your huggingface space a ZeroGPU Space & Test your model"
fi)
echo "5. Use the model in your applications"
echo "6. Share your results with the community"
echo ""
print_status "Pipeline completed successfully!" |