File size: 32,048 Bytes
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c417358
 
ebe598e
 
 
 
 
c2321bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe598e
c2321bb
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f4411
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40fd629
 
 
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
ebe598e
 
 
3c37508
 
 
 
 
 
 
ebe598e
3c37508
 
 
 
 
 
 
c417358
ebe598e
3c37508
ebe598e
 
 
3c37508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7656c
 
 
 
 
d291e63
 
 
 
c61ed6b
 
 
d291e63
 
 
 
 
 
 
 
 
 
235d769
c61ed6b
d291e63
 
 
 
235d769
d291e63
 
 
c61ed6b
 
d291e63
 
 
235d769
d291e63
 
 
c61ed6b
 
d291e63
 
ebe598e
c61ed6b
 
 
 
 
 
40fd629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7d1377
 
 
ebe598e
 
 
 
 
 
 
40fd629
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c417358
ebe598e
 
 
 
40fd629
ebe598e
 
 
 
 
 
5d7656c
39db0ca
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca1f1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe598e
fd0524b
 
3c37508
 
fd0524b
 
 
 
 
ebe598e
 
 
 
fd0524b
 
3c37508
 
fd0524b
 
 
 
 
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd0524b
 
 
 
 
3c37508
fd0524b
3c37508
 
 
 
fd0524b
93ed7a1
3c37508
 
93ed7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe598e
39db0ca
 
 
 
 
 
 
 
 
 
c417358
ebe598e
 
 
 
 
c417358
 
 
 
 
fd0524b
3c37508
 
fd0524b
 
 
40fd629
fd0524b
3c37508
ebe598e
 
 
c417358
ebe598e
 
 
 
c417358
 
 
 
fd0524b
3c37508
 
fd0524b
 
 
 
 
ebe598e
c417358
ebe598e
 
 
 
c417358
 
 
fd0524b
3c37508
 
fd0524b
 
 
 
ebe598e
 
93ed7a1
 
 
ebe598e
 
93ed7a1
ebe598e
93ed7a1
769bb84
 
ebe598e
769bb84
 
 
 
 
ebe598e
93ed7a1
 
 
ebe598e
93ed7a1
 
 
 
 
ebe598e
 
 
 
 
93ed7a1
 
 
 
 
fd0524b
3c37508
 
fd0524b
 
 
 
 
93ed7a1
 
 
 
 
40fd629
d7d1377
ebe598e
 
 
 
 
93ed7a1
 
769bb84
fd0524b
3c37508
 
fd0524b
 
 
 
 
93ed7a1
ebe598e
 
 
 
39db0ca
 
 
ebe598e
3c37508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40fd629
3c37508
 
 
40fd629
3c37508
 
40fd629
3c37508
 
40fd629
3c37508
 
 
40fd629
3c37508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40fd629
3c37508
40fd629
 
3c37508
40fd629
 
3c37508
 
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
40fd629
3c37508
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
 
 
40fd629
ebe598e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c37508
 
40fd629
ebe598e
 
 
 
 
 
3c37508
 
 
 
 
 
ebe598e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
#!/bin/bash
# Interactive SmolLM3 End-to-End Fine-tuning Pipeline
# This script creates a complete finetuning pipeline with user configuration

set -e  # Exit on any error

# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
PURPLE='\033[0;35m'
CYAN='\033[0;36m'
NC='\033[0m' # No Color

# Function to print colored output
print_status() {
    echo -e "${GREEN}โœ… $1${NC}"
}

print_warning() {
    echo -e "${YELLOW}โš ๏ธ  $1${NC}"
}

print_error() {
    echo -e "${RED}โŒ $1${NC}"
}

print_info() {
    echo -e "${BLUE}โ„น๏ธ  $1${NC}"
}

print_header() {
    echo -e "${PURPLE}๐Ÿš€ $1${NC}"
}

print_step() {
    echo -e "${CYAN}๐Ÿ“‹ $1${NC}"
}

# Function to get user input with default value
get_input() {
    local prompt="$1"
    local default="$2"
    local var_name="$3"
    
    if [ -n "$default" ]; then
        read -p "$prompt [$default]: " input
        if [ -z "$input" ]; then
            input="$default"
        fi
    else
        read -p "$prompt: " input
        while [ -z "$input" ]; do
            print_error "This field is required!"
            read -p "$prompt: " input
        done
    fi
    
    eval "$var_name=\"$input\""
}

# Function to get secure token input (hidden with stars)
get_secure_token_input() {
    local prompt="$1"
    local var_name="$2"
    local token_type="$3"
    
    echo -n "$prompt: "
    # Use -s flag to hide input, -r to not interpret backslashes
    read -s -r input
    echo  # Add newline after hidden input
    
    # Validate that input is not empty
    while [ -z "$input" ]; do
        print_error "Token is required!"
        echo -n "$prompt: "
        read -s -r input
        echo
    done
    
    # Store the token
    eval "$var_name=\"$input\""
    
    # Show confirmation with stars
    local masked_token="${input:0:4}****${input: -4}"
    print_status "$token_type token added: $masked_token"
}

# Function to select from options
select_option() {
    local prompt="$1"
    local options=("${@:2}")
    local var_name="${!#}"
    
    echo "$prompt"
    for i in "${!options[@]}"; do
        echo "  $((i+1)). ${options[$i]}"
    done
    
    while true; do
        read -p "Enter your choice (1-${#options[@]}): " choice
        if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then
            eval "$var_name=\"${options[$((choice-1))]}\""
            break
        else
            print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}"
        fi
    done
}

# Function to validate HF token and get username
validate_hf_token_and_get_username() {
    local token="$1"
    if [ -z "$token" ]; then
        return 1
    fi
    
    # Use Python script for validation
    local result
    if result=$(python3 scripts/validate_hf_token.py "$token" 2>/dev/null); then
        # Parse JSON result using a more robust approach
        local success=$(echo "$result" | python3 -c "
import sys, json
try:
    data = json.load(sys.stdin)
    print(data.get('success', False))
except:
    print('False')
")
        local username=$(echo "$result" | python3 -c "
import sys, json
try:
    data = json.load(sys.stdin)
    print(data.get('username', ''))
except:
    print('')
")
        local error=$(echo "$result" | python3 -c "
import sys, json
try:
    data = json.load(sys.stdin)
    print(data.get('error', 'Unknown error'))
except:
    print('Failed to parse response')
")
        
        if [ "$success" = "True" ] && [ -n "$username" ]; then
            HF_USERNAME="$username"
            return 0
        else
            print_error "Token validation failed: $error"
            return 1
        fi
    else
        print_error "Failed to run token validation script. Make sure huggingface_hub is installed."
        return 1
    fi
}

# Function to show training configurations
show_training_configs() {
    echo ""
    print_header "Available Training Configurations"
    echo "======================================"
    echo ""
    echo "1. Basic Training (Default)"
    echo "   - Model: SmolLM3-3B"
    echo "   - Dataset: SmolTalk"
    echo "   - Epochs: 3"
    echo "   - Batch Size: 2"
    echo "   - Learning Rate: 5e-6"
    echo ""
    echo "2. H100 Lightweight (Rapid)"
    echo "   - Model: SmolLM3-3B"
    echo "   - Dataset: OpenHermes-FR (80K samples)"
    echo "   - Epochs: 1"
    echo "   - Batch Size: 16"
    echo "   - Learning Rate: 8e-6"
    echo "   - Sequence Length: 8192"
    echo "   - Optimized for H100 rapid training"
    echo ""
    echo "3. A100 Large Scale"
    echo "   - Model: SmolLM3-3B"
    echo "   - Dataset: OpenHermes-FR"
    echo "   - Epochs: 1.3 passes"
    echo "   - Batch Size: 8"
    echo "   - Learning Rate: 5e-6"
    echo "   - Sequence Length: 8192"
    echo ""
    echo "4. Multiple Passes"
    echo "   - Model: SmolLM3-3B"
    echo "   - Dataset: OpenHermes-FR"
    echo "   - Epochs: 4 passes"
    echo "   - Batch Size: 6"
    echo "   - Learning Rate: 3e-6"
    echo "   - Sequence Length: 8192"
    echo ""
    echo "5. Custom Configuration"
    echo "   - User-defined parameters"
    echo ""
}

# Function to get training configuration
get_training_config() {
    local config_type="$1"
    
    case "$config_type" in
        "Basic Training")
            MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
            DATASET_NAME="legmlai/openhermes-fr"
            MAX_EPOCHS=3
            BATCH_SIZE=2
            GRADIENT_ACCUMULATION_STEPS=8
            LEARNING_RATE=5e-6
            MAX_SEQ_LENGTH=4096
            CONFIG_FILE="config/train_smollm3.py"
            ;;
        "H100 Lightweight (Rapid)")
            MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
            DATASET_NAME="legmlai/openhermes-fr"
            MAX_EPOCHS=1
            BATCH_SIZE=16
            GRADIENT_ACCUMULATION_STEPS=4
            LEARNING_RATE=8e-6
            MAX_SEQ_LENGTH=8192
            DATASET_SAMPLE_SIZE=80000
            CONFIG_FILE="config/train_smollm3_h100_lightweight.py"
            ;;
        "A100 Large Scale")
            MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
            DATASET_NAME="legmlai/openhermes-fr"
            MAX_EPOCHS=1
            BATCH_SIZE=8
            GRADIENT_ACCUMULATION_STEPS=16
            LEARNING_RATE=5e-6
            MAX_SEQ_LENGTH=8192
            CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py"
            ;;
        "Multiple Passes")
            MODEL_NAME="HuggingFaceTB/SmolLM3-3B"
            DATASET_NAME="legmlai/openhermes-fr"
            MAX_EPOCHS=4
            BATCH_SIZE=6
            GRADIENT_ACCUMULATION_STEPS=20
            LEARNING_RATE=3e-6
            MAX_SEQ_LENGTH=8192
            CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py"
            ;;
        "Custom Configuration")
            get_custom_config
            ;;
    esac
}

# Function to get custom configuration
get_custom_config() {
    print_step "Custom Configuration Setup"
    echo "============================="
    
    get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME
    get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME
    get_input "Number of epochs" "3" MAX_EPOCHS
    get_input "Batch size" "2" BATCH_SIZE
    get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS
    get_input "Learning rate" "5e-6" LEARNING_RATE
    get_input "Max sequence length" "4096" MAX_SEQ_LENGTH
    
    # Select config file based on dataset
    if [[ "$DATASET_NAME" == *"openhermes"* ]]; then
        CONFIG_FILE="config/train_smollm3_openhermes_fr.py"
    else
        CONFIG_FILE="config/train_smollm3.py"
    fi
}

# Function to create training configuration file
create_training_config() {
    local config_file="$1"
    
    cat > "$config_file" << EOF
"""
SmolLM3 Training Configuration - Generated by launch.sh
Optimized for: $TRAINING_CONFIG_TYPE
"""

from config.train_smollm3 import SmolLM3Config

config = SmolLM3Config(
    # Trainer type selection
    trainer_type="$TRAINER_TYPE",
    
    # Model configuration
    model_name="$MODEL_NAME",
    max_seq_length=$MAX_SEQ_LENGTH,
    use_flash_attention=True,
    use_gradient_checkpointing=True,
    
    # Training configuration
    batch_size=$BATCH_SIZE,
    gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS,
    learning_rate=$LEARNING_RATE,
    weight_decay=0.01,
    warmup_steps=100,
    max_iters=None,  # Will be calculated based on epochs
    eval_interval=100,
    log_interval=10,
    save_interval=500,
    
    # Optimizer configuration
    optimizer="adamw",
    beta1=0.9,
    beta2=0.95,
    eps=1e-8,
    
    # Scheduler configuration
    scheduler="cosine",
    min_lr=1e-6,
    
    # Mixed precision
    fp16=True,
    bf16=False,
    
    # Logging and saving
    save_steps=$SAVE_STEPS,
    eval_steps=$EVAL_STEPS,
    logging_steps=$LOGGING_STEPS,
    save_total_limit=3,
    
    # Evaluation
    eval_strategy="steps",
    metric_for_best_model="eval_loss",
    greater_is_better=False,
    load_best_model_at_end=True,
    
    # Data configuration
    dataset_name="$DATASET_NAME",
    dataset_split="train",
    input_field="prompt",
    target_field="completion",
    filter_bad_entries=False,
    bad_entry_field="bad_entry",
    
    # Chat template configuration
    use_chat_template=True,
    chat_template_kwargs={
        "enable_thinking": False,
        "add_generation_prompt": True,
        "no_think_system_message": True
    },
    
    # Trackio monitoring configuration
    enable_tracking=True,
    trackio_url="$TRACKIO_URL",
    trackio_token=None,
    log_artifacts=True,
    log_metrics=True,
    log_config=True,
    experiment_name="$EXPERIMENT_NAME",
    
    # HF Datasets configuration
    dataset_repo="$TRACKIO_DATASET_REPO"
)
EOF
}

# Main script starts here
print_header "SmolLM3 End-to-End Fine-tuning Pipeline"
echo "=============================================="
echo ""

# Step 1: Get user credentials (write and read tokens)
print_step "Step 1: User Authentication"
echo "================================"

print_info "You'll need two Hugging Face tokens:"
echo "1. Write Token - Used during training for creating repositories and pushing models"
echo "2. Read Token - Used in Trackio Space after training for security"
echo ""

print_info "Getting Write Token (for training operations)..."
get_secure_token_input "Enter your Hugging Face WRITE token (get from https://huggingface.co/settings/tokens)" HF_WRITE_TOKEN "Write"

print_info "Getting Read Token (for Trackio Space security)..."
get_secure_token_input "Enter your Hugging Face READ token (get from https://huggingface.co/settings/tokens)" HF_READ_TOKEN "Read"

# Validate write token and get username automatically
print_info "Validating write token and getting username..."
if validate_hf_token_and_get_username "$HF_WRITE_TOKEN"; then
    print_status "Write token validated successfully"
    print_info "Username: $HF_USERNAME"
else
    print_error "Invalid write token. Please check your token and try again."
    exit 1
fi

# Validate read token belongs to same user
print_info "Validating read token..."
if validate_hf_token_and_get_username "$HF_READ_TOKEN"; then
    READ_USERNAME="$HF_USERNAME"
    if [ "$READ_USERNAME" = "$HF_USERNAME" ]; then
        print_status "Read token validated successfully"
        print_info "Both tokens belong to user: $HF_USERNAME"
    else
        print_error "Token mismatch: write token user ($HF_USERNAME) != read token user ($READ_USERNAME)"
        print_error "Both tokens must belong to the same user"
        exit 1
    fi
else
    print_error "Invalid read token. Please check your token and try again."
    exit 1
fi

# Set the main HF_TOKEN to write token for training operations
HF_TOKEN="$HF_WRITE_TOKEN"

# Step 2: Select training configuration
print_step "Step 2: Training Configuration"
echo "=================================="

show_training_configs
select_option "Select training configuration:" "Basic Training" "H100 Lightweight (Rapid)" "A100 Large Scale" "Multiple Passes" "Custom Configuration" TRAINING_CONFIG_TYPE

get_training_config "$TRAINING_CONFIG_TYPE"

# Step 3: Get experiment details
print_step "Step 3: Experiment Details"
echo "=============================="

get_input "Experiment name" "smollm3_finetune_$(date +%Y%m%d_%H%M%S)" EXPERIMENT_NAME

# Automatically generate model repository name
print_info "Setting up model repository automatically..."
REPO_NAME="$HF_USERNAME/smollm3-finetuned-$(date +%Y%m%d)"
print_status "Model repository: $REPO_NAME"

# Automatically create dataset repository
print_info "Setting up Trackio dataset repository automatically..."

# Set default dataset repository
TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"

# Ask if user wants to customize dataset name
echo ""
echo "Dataset repository options:"
echo "1. Use default name (trackio-experiments)"
echo "2. Customize dataset name"
echo ""
read -p "Choose option (1/2): " dataset_option

if [ "$dataset_option" = "2" ]; then
    get_input "Custom dataset name (without username)" "trackio-experiments" CUSTOM_DATASET_NAME
    if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" "$CUSTOM_DATASET_NAME" 2>/dev/null; then
        # Update with the actual repository name from the script
        TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
        print_status "Custom dataset repository created successfully"
    else
        print_warning "Custom dataset creation failed, using default"
        if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then
            TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
            print_status "Default dataset repository created successfully"
        else
            print_warning "Automatic dataset creation failed, using default"
            TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
        fi
    fi
else
    if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then
        TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
        print_status "Dataset repository created successfully"
    else
        print_warning "Automatic dataset creation failed, using default"
        TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
    fi
fi

# Ensure TRACKIO_DATASET_REPO is always set
if [ -z "$TRACKIO_DATASET_REPO" ]; then
    TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments"
    print_warning "Dataset repository not set, using default: $TRACKIO_DATASET_REPO"
fi

# Step 3.5: Select trainer type
print_step "Step 3.5: Trainer Type Selection"
echo "===================================="

echo "Select the type of training to perform:"
echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning"
echo "   - Uses SFTTrainer for instruction following"
echo "   - Suitable for most fine-tuning tasks"
echo "   - Optimized for instruction datasets"
echo ""
echo "2. DPO (Direct Preference Optimization) - Preference-based training"
echo "   - Uses DPOTrainer for preference learning"
echo "   - Requires preference datasets (chosen/rejected pairs)"
echo "   - Optimizes for human preferences"
echo ""

select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE

# Convert trainer type to lowercase for the training script
TRAINER_TYPE_LOWER=$(echo "$TRAINER_TYPE" | tr '[:upper:]' '[:lower:]')

# Step 4: Training parameters
print_step "Step 4: Training Parameters"
echo "==============================="

echo "Current configuration:"
echo "  Model: $MODEL_NAME"
echo "  Dataset: $DATASET_NAME"
echo "  Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
    echo "  Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo "  Epochs: $MAX_EPOCHS"
echo "  Batch Size: $BATCH_SIZE"
echo "  Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS"
echo "  Learning Rate: $LEARNING_RATE"
echo "  Sequence Length: $MAX_SEQ_LENGTH"

get_input "Save steps" "500" SAVE_STEPS
get_input "Evaluation steps" "100" EVAL_STEPS
get_input "Logging steps" "10" LOGGING_STEPS

# Step 5: Trackio Space configuration
print_step "Step 5: Trackio Space Configuration"
echo "======================================"

get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME
TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME"

# Step 6: Confirm configuration
print_step "Step 6: Configuration Summary"
echo "================================="

echo ""
echo "๐Ÿ“‹ Configuration Summary:"
echo "========================"
echo "  User: $HF_USERNAME (auto-detected from token)"
echo "  Experiment: $EXPERIMENT_NAME"
echo "  Model: $MODEL_NAME"
echo "  Dataset: $DATASET_NAME"
echo "  Training Config: $TRAINING_CONFIG_TYPE"
echo "  Trainer Type: $TRAINER_TYPE"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
    echo "  Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}"
fi
echo "  Epochs: $MAX_EPOCHS"
echo "  Batch Size: $BATCH_SIZE"
echo "  Learning Rate: $LEARNING_RATE"
echo "  Model Repo: $REPO_NAME (auto-generated)"
echo "  Author: $AUTHOR_NAME"
echo "  Trackio Space: $TRACKIO_URL"
echo "  HF Dataset: $TRACKIO_DATASET_REPO"
echo ""

read -p "Proceed with this configuration? (y/N): " confirm
if [[ ! "$confirm" =~ ^[Yy]$ ]]; then
    print_info "Configuration cancelled. Exiting."
    exit 0
fi

# Step 7: Environment setup
print_step "Step 7: Environment Setup"
echo "============================"

print_info "Installing system dependencies..."

# Check if we're already root or if sudo is available
if [ "$EUID" -eq 0 ]; then
    # Already root, no need for sudo
    print_info "Running as root, skipping sudo..."
    apt-get update
    apt-get install -y git curl wget unzip python3-pip python3-venv
elif command -v sudo >/dev/null 2>&1; then
    # sudo is available, use it
    print_info "Using sudo for system dependencies..."
    sudo apt-get update
    sudo apt-get install -y git curl wget unzip python3-pip python3-venv
else
    # No sudo available, try without it
    print_warning "sudo not available, attempting to install without sudo..."
    if command -v apt-get >/dev/null 2>&1; then
        apt-get update
        apt-get install -y git curl wget unzip python3-pip python3-venv
    else
        print_warning "apt-get not available, skipping system dependencies..."
        print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed"
    fi
fi

# Set environment variables before creating virtual environment
print_info "Setting up environment variables..."
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"

print_info "Creating Python virtual environment..."
python3 -m venv smollm3_env
source smollm3_env/bin/activate

# Re-export environment variables in the virtual environment
print_info "Configuring environment variables in virtual environment..."
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"

print_info "Installing PyTorch with CUDA support..."
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

print_info "Installing project dependencies..."
pip install -r requirements/requirements_core.txt

print_info "Installing additional dependencies..."
pip install trl>=0.7.0
pip install peft>=0.4.0
pip install accelerate>=0.20.0
pip install huggingface-hub>=0.16.0
pip install datasets>=2.14.0
pip install requests>=2.31.0

# Step 8: Authentication setup
print_step "Step 8: Authentication Setup"
echo "================================"

print_info "Setting up Hugging Face token for Python API..."
print_status "HF token configured for Python API usage"
print_info "Username: $HF_USERNAME (auto-detected from token)"
print_info "Token available in environment: ${HF_TOKEN:0:10}...${HF_TOKEN: -4}"

# Verify tokens are available in the virtual environment
print_info "Verifying token availability in virtual environment..."
if [ -n "$HF_WRITE_TOKEN" ] && [ -n "$HF_READ_TOKEN" ] && [ -n "$HUGGING_FACE_HUB_TOKEN" ]; then
    print_status "โœ… Tokens properly configured in virtual environment"
    print_info "  HF_WRITE_TOKEN: ${HF_WRITE_TOKEN:0:10}...${HF_WRITE_TOKEN: -4}"
    print_info "  HF_READ_TOKEN: ${HF_READ_TOKEN:0:10}...${HF_READ_TOKEN: -4}"
    print_info "  HUGGING_FACE_HUB_TOKEN: ${HUGGING_FACE_HUB_TOKEN:0:10}...${HUGGING_FACE_HUB_TOKEN: -4}"
else
    print_error "โŒ Tokens not properly configured in virtual environment"
    print_error "Please check your tokens and try again"
    exit 1
fi

# Configure git for HF operations
print_step "Step 8.1: Git Configuration"
echo "================================"

print_info "Configuring git for Hugging Face operations..."

# Get user's email for git configuration
get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL

# Configure git locally (not globally) for this project
git config user.email "$GIT_EMAIL"
git config user.name "$HF_USERNAME"

# Verify git configuration
print_info "Verifying git configuration..."
if git config user.email && git config user.name; then
    print_status "Git configured successfully"
    print_info "  Email: $(git config user.email)"
    print_info "  Name: $(git config user.name)"
else
    print_error "Failed to configure git"
    exit 1
fi

# Step 8.2: Author Information for Model Card
print_step "Step 8.2: Author Information"
echo "================================="

print_info "This information will be used in the model card and citation."
get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME

print_info "Model description will be used in the model card and repository."
get_input "Model description" "A fine-tuned version of SmolLM3-3B for improved french language text generation and conversation capabilities." MODEL_DESCRIPTION

# Step 9: Deploy Trackio Space (automated)
print_step "Step 9: Deploying Trackio Space"
echo "==================================="

cd scripts/trackio_tonic

print_info "Deploying Trackio Space ..."
print_info "Space name: $TRACKIO_SPACE_NAME"
print_info "Username will be auto-detected from token"
print_info "Secrets will be set automatically via API"

# Ensure environment variables are available for the script
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"

# Run deployment script with automated features
python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$HF_TOKEN" "$GIT_EMAIL" "$HF_USERNAME" "$TRACKIO_DATASET_REPO"

print_status "Trackio Space deployed: $TRACKIO_URL"

# Step 10: Setup HF Dataset (automated)
print_step "Step 10: Setting up HF Dataset"
echo "=================================="

cd ../dataset_tonic
print_info "Setting up HF Dataset with automated features..."
print_info "Username will be auto-detected from token"
print_info "Dataset repository: $TRACKIO_DATASET_REPO"

# Ensure environment variables are available for the script
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"

python setup_hf_dataset.py "$HF_TOKEN"

# Step 11: Configure Trackio (automated)
print_step "Step 11: Configuring Trackio"
echo "================================="

cd ../trackio_tonic
print_info "Configuring Trackio ..."
print_info "Username will be auto-detected from token"

# Ensure environment variables are available for the script
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"

python configure_trackio.py

# Step 12: Training Configuration
print_step "Step 12: Training Configuration"
echo "==================================="

cd ../..
print_info "Using existing configuration file: $CONFIG_FILE"

# Step 13: Dataset Configuration
print_step "Step 13: Dataset Configuration"
echo "=================================="

print_info "Dataset will be loaded directly by src/data.py during training"
print_info "Dataset: $DATASET_NAME"
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
    print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)"
fi

# Step 14: Training Parameters
print_step "Step 14: Training Parameters"
echo "================================"

print_info "Training parameters will be loaded from configuration file"
print_info "Model: $MODEL_NAME"
print_info "Dataset: $DATASET_NAME"
print_info "Batch size: $BATCH_SIZE"
print_info "Learning rate: $LEARNING_RATE"

# Step 15: Start training
print_step "Step 15: Starting Training"
echo "=============================="

print_info "Starting training with configuration: $CONFIG_FILE"
print_info "Experiment: $EXPERIMENT_NAME"
print_info "Output: /output-checkpoint"
print_info "Trackio: $TRACKIO_URL"

# Ensure environment variables are available for training
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"

# Run the simpler training script
python scripts/training/train.py \
    --config "$CONFIG_FILE" \
    --experiment-name "$EXPERIMENT_NAME" \
    --output-dir /output-checkpoint \
    --trackio-url "$TRACKIO_URL" \
    --trainer-type "$TRAINER_TYPE_LOWER"

# Step 16: Push model to Hugging Face Hub
print_step "Step 16: Pushing Model to HF Hub"
echo "====================================="

print_info "Pushing model to: $REPO_NAME"
print_info "Checkpoint: /output-checkpoint"

# Ensure environment variables are available for model push
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO"

# Run the push script
python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \
    --token "$HF_TOKEN" \
    --trackio-url "$TRACKIO_URL" \
    --experiment-name "$EXPERIMENT_NAME" \
    --dataset-repo "$TRACKIO_DATASET_REPO" \
    --author-name "$AUTHOR_NAME" \
    --model-description "$MODEL_DESCRIPTION"

# Step 16.5: Switch Trackio Space to Read Token (Security)
print_step "Step 16.5: Switching to Read Token for Security"
echo "===================================================="

print_info "Switching Trackio Space from write token to read token for security..."
print_info "This ensures the space can only read datasets, not write to repositories"

# Ensure environment variables are available for token switch
export HF_TOKEN="$HF_WRITE_TOKEN"  # Use write token to update space
export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN"
export HF_USERNAME="$HF_USERNAME"

# Switch to read token in Trackio Space
cd scripts/trackio_tonic
python switch_to_read_token.py "$HF_USERNAME/$TRACKIO_SPACE_NAME" "$HF_READ_TOKEN" "$HF_WRITE_TOKEN"

if [ $? -eq 0 ]; then
    print_status "โœ… Successfully switched Trackio Space to read token"
    print_info "๐Ÿ”’ Space now uses read-only permissions for security"
else
    print_warning "โš ๏ธ Failed to switch to read token, but continuing with pipeline"
    print_info "You can manually switch the token in your Space settings later"
fi

cd ../..

# Step 17: Deploy Demo Space
print_step "Step 17: Deploying Demo Space"
echo "=================================="

# Ask user if they want to deploy a demo space
get_input "Do you want to deploy a demo space to test your model? (y/n)" "y" "DEPLOY_DEMO"

if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
    print_info "Deploying demo space for model testing..."
    
    # Use main model for demo (no quantization)
    DEMO_MODEL_ID="$REPO_NAME"
    DEMO_SUBFOLDER=""
    
    # Ensure environment variables are available for demo deployment
export HF_WRITE_TOKEN="$HF_WRITE_TOKEN"
export HF_READ_TOKEN="$HF_READ_TOKEN"
export HF_TOKEN="$HF_TOKEN"
export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN"
export HF_USERNAME="$HF_USERNAME"
    
    print_info "Deploying demo space for model: $DEMO_MODEL_ID"
    print_info "Using subfolder: $DEMO_SUBFOLDER"
    
    python scripts/deploy_demo_space.py \
        --hf-token "$HF_TOKEN" \
        --hf-username "$HF_USERNAME" \
        --model-id "$DEMO_MODEL_ID" \
        --subfolder "$DEMO_SUBFOLDER" \
        --space-name "${REPO_NAME}-demo"
    
    if [ $? -eq 0 ]; then
        DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo"
        print_status "โœ… Demo space deployed successfully: $DEMO_SPACE_URL"
    else
        print_warning "โš ๏ธ Demo space deployment failed, but continuing with pipeline"
    fi
else
    print_info "Skipping demo space deployment"
fi

# Step 18: Create summary report
print_step "Step 18: Creating Summary Report"
echo "===================================="

cat > training_summary.md << EOF
# SmolLM3 Fine-tuning Summary

## Configuration
- **Model**: $MODEL_NAME
- **Dataset**: $DATASET_NAME
- **Experiment**: $EXPERIMENT_NAME
- **Repository**: $REPO_NAME
- **Trackio Space**: $TRACKIO_URL
- **HF Dataset**: $TRACKIO_DATASET_REPO
- **Training Config**: $TRAINING_CONFIG_TYPE
- **Trainer Type**: $TRAINER_TYPE
- **Security**: Dual token system (write + read tokens)
$(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}"
fi)

## Training Parameters
- **Batch Size**: $BATCH_SIZE
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS
- **Learning Rate**: $LEARNING_RATE
- **Max Epochs**: $MAX_EPOCHS
- **Sequence Length**: $MAX_SEQ_LENGTH

## Results
- **Model Repository**: https://huggingface.co/$REPO_NAME
- **Trackio Monitoring**: $TRACKIO_URL
- **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO
- **Security**: Trackio Space switched to read-only token for security
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "- **Demo Space**: https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo"
fi)

## Next Steps
1. Monitor training progress in your Trackio Space
2. Check the model repository on Hugging Face Hub
3. Use the model in your applications
4. Share your results with the community

## Files Created
- Training configuration: \`$CONFIG_FILE\`
- Model checkpoint: \`/output-checkpoint/\`
- Training logs: \`training.log\`
- Summary report: \`training_summary.md\`
EOF

print_status "Summary report saved to: training_summary.md"

# Final summary
echo ""
print_header "๐ŸŽ‰ End-to-End Pipeline Completed Successfully!"
echo "=================================================="
echo ""
echo "๐Ÿ“Š Model: https://huggingface.co/$REPO_NAME"
echo "๐Ÿ“ˆ Trackio: $TRACKIO_URL"
echo "๐Ÿ“‹ Experiment: $EXPERIMENT_NAME"
echo "๐Ÿ“Š Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO"
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "๐ŸŽฎ Demo: https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo"
fi)
echo ""
echo "๐Ÿ“‹ Summary report saved to: training_summary.md"
echo ""
echo "๐Ÿš€ Next steps:"
echo "1. Monitor training progress in your Trackio Space"
echo "2. Check the model repository on Hugging Face Hub"
echo "3. Your Trackio Space is now secured with read-only permissions"
$(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then
echo "3. Make your huggingface space a ZeroGPU Space & Test your model"
fi)
echo "5. Use the model in your applications"
echo "6. Share your results with the community"
echo ""
print_status "Pipeline completed successfully!"