Spaces:
Running
Running
fix launch script
Browse files- .cursorrules +0 -277
- launch.sh +37 -119
- scripts/trackio_tonic/deploy_trackio_space.py +11 -3
- src/config.py +19 -1
- src/train.py +11 -1
- tests/test_dataset.py +88 -0
- tests/test_dataset_loading.py +71 -0
.cursorrules
DELETED
@@ -1,277 +0,0 @@
|
|
1 |
-
---
|
2 |
-
description: SmolLM3 Fine-tuning Pipeline - Project Rules and Conventions
|
3 |
-
globs: ["**/*.py", "**/*.sh", "**/*.md", "**/*.json"]
|
4 |
-
alwaysApply: true
|
5 |
-
---
|
6 |
-
|
7 |
-
# SmolLM3 Fine-tuning Pipeline Project Rules
|
8 |
-
|
9 |
-
## Project Overview
|
10 |
-
This is a comprehensive end-to-end fine-tuning pipeline for SmolLM3 models with Trackio monitoring, Hugging Face integration, and interactive configuration management.
|
11 |
-
|
12 |
-
## Core Architecture
|
13 |
-
|
14 |
-
### Directory Structure
|
15 |
-
- `config/` - Training configuration files for different scenarios
|
16 |
-
- `src/` - Core training and model logic
|
17 |
-
- `scripts/` - Utility scripts for deployment, dataset management, and model pushing
|
18 |
-
- `docs/` - Comprehensive documentation and guides
|
19 |
-
- `templates/` - Templates for HF Spaces and datasets
|
20 |
-
- `tests/` - Test files and debugging scripts
|
21 |
-
- `outputs/` - Training outputs and checkpoints
|
22 |
-
|
23 |
-
### Key Components
|
24 |
-
|
25 |
-
#### Training Configurations
|
26 |
-
- **Basic Training**: SmolLM3-3B + OpenHermes-FR, 3 epochs, batch size 2
|
27 |
-
- **H100 Lightweight**: SmolLM3-3B + OpenHermes-FR (80K samples), 1 epoch, batch size 16
|
28 |
-
- **A100 Large Scale**: SmolLM3-3B + OpenHermes-FR, 1.3 passes, batch size 8
|
29 |
-
- **Multiple Passes**: SmolLM3-3B + OpenHermes-FR, 4 epochs, batch size 6
|
30 |
-
- **Custom Configuration**: User-defined parameters
|
31 |
-
|
32 |
-
#### Core Modules
|
33 |
-
- `src/train.py` - Main training orchestration
|
34 |
-
- `src/model.py` - Model loading and configuration
|
35 |
-
- `src/data.py` - Dataset processing and loading
|
36 |
-
- `src/monitoring.py` - Trackio integration and metrics
|
37 |
-
- `src/trainer.py` - Training loop and optimization
|
38 |
-
|
39 |
-
## Coding Conventions
|
40 |
-
|
41 |
-
### Python Style
|
42 |
-
- Use type hints for all function parameters and return values
|
43 |
-
- Follow PEP 8 for formatting
|
44 |
-
- Use descriptive variable names in snake_case
|
45 |
-
- Add comprehensive docstrings for all functions
|
46 |
-
- Use f-strings for string formatting
|
47 |
-
|
48 |
-
### Configuration Management
|
49 |
-
- All training configs inherit from `SmolLM3Config` base class
|
50 |
-
- Use dataclasses for configuration objects
|
51 |
-
- Validate configuration parameters in __post_init__
|
52 |
-
- Support both YAML and Python configuration files
|
53 |
-
|
54 |
-
### Error Handling
|
55 |
-
- Use try-except blocks for external API calls (HF, Trackio)
|
56 |
-
- Log errors with appropriate context
|
57 |
-
- Provide user-friendly error messages
|
58 |
-
- Implement graceful degradation for optional features
|
59 |
-
|
60 |
-
### Monitoring Integration
|
61 |
-
- Always include Trackio URL and experiment name in configs
|
62 |
-
- Log metrics every N steps (configurable)
|
63 |
-
- Save checkpoints and artifacts to HF Datasets
|
64 |
-
- Use structured logging with consistent field names
|
65 |
-
|
66 |
-
## File Naming Conventions
|
67 |
-
|
68 |
-
### Configuration Files
|
69 |
-
- `train_smollm3_*.py` - Training configurations
|
70 |
-
- `*_config.py` - General configuration files
|
71 |
-
- Use descriptive suffixes: `_h100_lightweight`, `_a100_large`, `_multiple_passes`
|
72 |
-
|
73 |
-
### Script Files
|
74 |
-
- `deploy_*.py` - Deployment scripts
|
75 |
-
- `setup_*.py` - Setup and initialization scripts
|
76 |
-
- `push_*.py` - Model pushing scripts
|
77 |
-
- `configure_*.py` - Configuration scripts
|
78 |
-
|
79 |
-
### Test Files
|
80 |
-
- `test_*.py` - Test files
|
81 |
-
- `debug_*.py` - Debugging scripts
|
82 |
-
- Include descriptive names indicating what they test
|
83 |
-
|
84 |
-
## Training Pipeline Workflow
|
85 |
-
|
86 |
-
### Interactive Pipeline (`launch.sh`)
|
87 |
-
1. **Authentication**: HF username and token validation
|
88 |
-
2. **Configuration Selection**: Choose from predefined configs or custom
|
89 |
-
3. **Experiment Setup**: Configure experiment name and repositories
|
90 |
-
4. **Environment Setup**: Install dependencies and setup virtual environment
|
91 |
-
5. **Deployment**: Deploy Trackio Space and setup HF Dataset
|
92 |
-
6. **Training**: Execute training with monitoring
|
93 |
-
7. **Model Push**: Upload model to HF Hub with documentation
|
94 |
-
8. **Testing**: Validate uploaded model functionality
|
95 |
-
|
96 |
-
### Configuration Selection Logic
|
97 |
-
- Basic Training: Default for beginners and learning
|
98 |
-
- H100 Lightweight: Rapid experiments on H100 GPUs
|
99 |
-
- A100 Large Scale: Serious research and production
|
100 |
-
- Multiple Passes: Thorough training for production models
|
101 |
-
- Custom: User-defined parameters for specific needs
|
102 |
-
|
103 |
-
## Dataset Management
|
104 |
-
|
105 |
-
### Supported Formats
|
106 |
-
- Hugging Face Datasets format
|
107 |
-
- JSON files with prompt/completion pairs
|
108 |
-
- Chat format with messages array
|
109 |
-
- Custom formats with conversion functions
|
110 |
-
|
111 |
-
### Dataset Processing
|
112 |
-
- Automatic format detection and conversion
|
113 |
-
- Random sampling for lightweight configurations
|
114 |
-
- Validation split creation
|
115 |
-
- Bad entry filtering and handling
|
116 |
-
|
117 |
-
### Dataset Sampling (H100 Lightweight)
|
118 |
-
- 80,000 random samples from OpenHermes-FR
|
119 |
-
- 1,000 validation samples (if available)
|
120 |
-
- Fixed random seed (42) for reproducibility
|
121 |
-
- Automatic sampling during dataset preparation
|
122 |
-
|
123 |
-
## Model Management
|
124 |
-
|
125 |
-
### Model Loading
|
126 |
-
- Support for HuggingFaceTB/SmolLM3-3B
|
127 |
-
- Flash attention and gradient checkpointing
|
128 |
-
- Mixed precision training (fp16/bf16)
|
129 |
-
- Device mapping and memory optimization
|
130 |
-
|
131 |
-
### Model Pushing
|
132 |
-
- Comprehensive model cards with training details
|
133 |
-
- Automatic README generation
|
134 |
-
- License and usage information
|
135 |
-
- Training metrics and configuration
|
136 |
-
|
137 |
-
## Monitoring and Tracking
|
138 |
-
|
139 |
-
### Trackio Integration
|
140 |
-
- Real-time metrics logging
|
141 |
-
- Training curves visualization
|
142 |
-
- Resource usage monitoring
|
143 |
-
- Artifact storage and versioning
|
144 |
-
|
145 |
-
### Metrics to Track
|
146 |
-
- Training and validation loss
|
147 |
-
- Learning rate schedule
|
148 |
-
- Gradient norms
|
149 |
-
- GPU utilization and memory
|
150 |
-
- Training speed (steps/second)
|
151 |
-
|
152 |
-
## Error Handling and Validation
|
153 |
-
|
154 |
-
### Input Validation
|
155 |
-
- Validate HF tokens before use
|
156 |
-
- Check CUDA availability
|
157 |
-
- Verify dataset accessibility
|
158 |
-
- Validate configuration parameters
|
159 |
-
|
160 |
-
### Error Recovery
|
161 |
-
- Graceful handling of network issues
|
162 |
-
- Automatic retry for failed operations
|
163 |
-
- Checkpoint recovery for interrupted training
|
164 |
-
- Fallback options for optional features
|
165 |
-
|
166 |
-
## Documentation Standards
|
167 |
-
|
168 |
-
### README Files
|
169 |
-
- Clear project description
|
170 |
-
- Installation instructions
|
171 |
-
- Usage examples
|
172 |
-
- Configuration options
|
173 |
-
- Troubleshooting guide
|
174 |
-
|
175 |
-
### Code Documentation
|
176 |
-
- Comprehensive docstrings
|
177 |
-
- Type hints for all functions
|
178 |
-
- Example usage in docstrings
|
179 |
-
- Parameter descriptions
|
180 |
-
- Return value documentation
|
181 |
-
|
182 |
-
## Testing and Validation
|
183 |
-
|
184 |
-
### Test Categories
|
185 |
-
- Unit tests for core functions
|
186 |
-
- Integration tests for pipeline
|
187 |
-
- Configuration validation tests
|
188 |
-
- Model loading and saving tests
|
189 |
-
- Dataset processing tests
|
190 |
-
|
191 |
-
### Debugging Tools
|
192 |
-
- Standalone test scripts
|
193 |
-
- Configuration validation
|
194 |
-
- Model testing utilities
|
195 |
-
- Dataset inspection tools
|
196 |
-
|
197 |
-
## Performance Optimization
|
198 |
-
|
199 |
-
### H100 Optimizations
|
200 |
-
- Larger batch sizes (16 vs 8 for A100)
|
201 |
-
- Reduced gradient accumulation (4 vs 16)
|
202 |
-
- Higher learning rates (8e-6 vs 5e-6)
|
203 |
-
- Optimized data loading (4 workers, pin memory)
|
204 |
-
|
205 |
-
### Memory Management
|
206 |
-
- Gradient checkpointing for large models
|
207 |
-
- Mixed precision training
|
208 |
-
- Dynamic batch sizing
|
209 |
-
- Memory-efficient data loading
|
210 |
-
|
211 |
-
## Security and Best Practices
|
212 |
-
|
213 |
-
### Token Management
|
214 |
-
- Never hardcode tokens in code
|
215 |
-
- Use environment variables
|
216 |
-
- Validate tokens before use
|
217 |
-
- Secure token storage
|
218 |
-
|
219 |
-
### Data Privacy
|
220 |
-
- Filter sensitive data from datasets
|
221 |
-
- Validate dataset contents
|
222 |
-
- Secure data transmission
|
223 |
-
- Proper data disposal
|
224 |
-
|
225 |
-
## Deployment and CI/CD
|
226 |
-
|
227 |
-
### Environment Setup
|
228 |
-
- Python virtual environments
|
229 |
-
- CUDA-compatible PyTorch
|
230 |
-
- Required dependencies installation
|
231 |
-
- System package management
|
232 |
-
|
233 |
-
### Automated Deployment
|
234 |
-
- Trackio Space deployment
|
235 |
-
- HF Dataset setup
|
236 |
-
- Model repository creation
|
237 |
-
- Configuration file generation
|
238 |
-
|
239 |
-
## Troubleshooting Guidelines
|
240 |
-
|
241 |
-
### Common Issues
|
242 |
-
- CUDA out of memory: Reduce batch size
|
243 |
-
- Network timeouts: Check internet connection
|
244 |
-
- Token validation: Verify HF token permissions
|
245 |
-
- Dataset loading: Check dataset accessibility
|
246 |
-
|
247 |
-
### Debugging Steps
|
248 |
-
1. Check system requirements
|
249 |
-
2. Validate configuration
|
250 |
-
3. Test individual components
|
251 |
-
4. Review logs and error messages
|
252 |
-
5. Verify external service connectivity
|
253 |
-
|
254 |
-
## Future Enhancements
|
255 |
-
|
256 |
-
### Planned Features
|
257 |
-
- Multi-GPU training support
|
258 |
-
- Advanced dataset sampling strategies
|
259 |
-
- Automated hyperparameter optimization
|
260 |
-
- Enhanced monitoring and visualization
|
261 |
-
- Support for additional model architectures
|
262 |
-
|
263 |
-
### Extensibility
|
264 |
-
- Modular configuration system
|
265 |
-
- Plugin architecture for custom features
|
266 |
-
- Support for custom datasets and models
|
267 |
-
- Flexible monitoring integration
|
268 |
-
|
269 |
-
---
|
270 |
-
|
271 |
-
**When working with this codebase:**
|
272 |
-
- Always consider the end-to-end pipeline workflow
|
273 |
-
- Follow the established configuration patterns
|
274 |
-
- Include proper error handling and validation
|
275 |
-
- Maintain comprehensive documentation
|
276 |
-
- Test changes thoroughly before deployment
|
277 |
-
- Consider performance implications for different hardware configurations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
launch.sh
CHANGED
@@ -489,113 +489,45 @@ echo "==========================================="
|
|
489 |
cd ../..
|
490 |
create_training_config "$CONFIG_FILE"
|
491 |
|
492 |
-
# Step 13:
|
493 |
-
print_step "Step 13:
|
494 |
-
echo "
|
495 |
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
# Load dataset
|
503 |
-
print('Loading dataset: $DATASET_NAME')
|
504 |
-
dataset = load_dataset('$DATASET_NAME')
|
505 |
-
|
506 |
-
# Create dataset directory
|
507 |
-
os.makedirs('training_dataset', exist_ok=True)
|
508 |
-
|
509 |
-
# Convert to training format
|
510 |
-
def convert_to_training_format(example):
|
511 |
-
# Handle different dataset formats
|
512 |
-
if 'prompt' in example and 'completion' in example:
|
513 |
-
return {
|
514 |
-
'prompt': example['prompt'],
|
515 |
-
'completion': example['completion']
|
516 |
-
}
|
517 |
-
elif 'instruction' in example and 'output' in example:
|
518 |
-
return {
|
519 |
-
'prompt': example['instruction'],
|
520 |
-
'completion': example['output']
|
521 |
-
}
|
522 |
-
elif 'messages' in example:
|
523 |
-
# Handle chat format
|
524 |
-
messages = example['messages']
|
525 |
-
if len(messages) >= 2:
|
526 |
-
return {
|
527 |
-
'prompt': messages[0]['content'],
|
528 |
-
'completion': messages[1]['content']
|
529 |
-
}
|
530 |
-
else:
|
531 |
-
# Fallback
|
532 |
-
return {
|
533 |
-
'prompt': str(example.get('input', '')),
|
534 |
-
'completion': str(example.get('output', ''))
|
535 |
-
}
|
536 |
-
|
537 |
-
# Process train split
|
538 |
-
train_data = []
|
539 |
-
for example in dataset['train']:
|
540 |
-
training_example = convert_to_training_format(example)
|
541 |
-
if training_example['prompt'] and training_example['completion']:
|
542 |
-
train_data.append(training_example)
|
543 |
-
|
544 |
-
# Apply dataset sampling for lightweight configuration
|
545 |
-
if '$TRAINING_CONFIG_TYPE' == 'H100 Lightweight (Rapid)' and len(train_data) > ${DATASET_SAMPLE_SIZE:-0}:
|
546 |
-
print(f'Sampling {${DATASET_SAMPLE_SIZE:-80000}} random samples from {len(train_data)} total samples')
|
547 |
-
random.seed(42) # For reproducibility
|
548 |
-
train_data = random.sample(train_data, ${DATASET_SAMPLE_SIZE:-80000})
|
549 |
-
print(f'Selected {len(train_data)} samples for lightweight training')
|
550 |
-
|
551 |
-
# Process validation split if available
|
552 |
-
val_data = []
|
553 |
-
if 'validation' in dataset:
|
554 |
-
for example in dataset['validation']:
|
555 |
-
training_example = convert_to_training_format(example)
|
556 |
-
if training_example['prompt'] and training_example['completion']:
|
557 |
-
val_data.append(training_example)
|
558 |
-
|
559 |
-
# For lightweight config, also sample validation if it's large
|
560 |
-
if '$TRAINING_CONFIG_TYPE' == 'H100 Lightweight (Rapid)' and len(val_data) > 1000:
|
561 |
-
print(f'Sampling 1000 random validation samples from {len(val_data)} total')
|
562 |
-
random.seed(42) # For reproducibility
|
563 |
-
val_data = random.sample(val_data, 1000)
|
564 |
-
|
565 |
-
# Save to files
|
566 |
-
with open('training_dataset/train.json', 'w') as f:
|
567 |
-
json.dump(train_data, f, indent=2)
|
568 |
-
|
569 |
-
if val_data:
|
570 |
-
with open('training_dataset/validation.json', 'w') as f:
|
571 |
-
json.dump(val_data, f, indent=2)
|
572 |
-
|
573 |
-
print(f'Dataset prepared: {len(train_data)} train samples, {len(val_data)} validation samples')
|
574 |
-
"
|
575 |
|
576 |
# Step 14: Calculate training parameters
|
577 |
print_step "Step 14: Calculating Training Parameters"
|
578 |
echo "============================================"
|
579 |
|
580 |
-
|
581 |
EFFECTIVE_BATCH_SIZE=$((BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS))
|
582 |
-
STEPS_PER_EPOCH=$((TOTAL_SAMPLES / EFFECTIVE_BATCH_SIZE))
|
583 |
-
MAX_STEPS=$((STEPS_PER_EPOCH * MAX_EPOCHS))
|
584 |
-
|
585 |
-
echo " Total samples: $TOTAL_SAMPLES"
|
586 |
echo " Effective batch size: $EFFECTIVE_BATCH_SIZE"
|
587 |
-
echo "
|
588 |
-
echo "
|
|
|
|
|
589 |
|
590 |
# Step 15: Start training
|
591 |
print_step "Step 15: Starting Training"
|
592 |
echo "=============================="
|
593 |
|
594 |
-
|
595 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
596 |
--out_dir /output-checkpoint \
|
597 |
--init_from scratch \
|
598 |
-
--max_iters $MAX_STEPS \
|
599 |
--batch_size $BATCH_SIZE \
|
600 |
--learning_rate $LEARNING_RATE \
|
601 |
--gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
|
@@ -613,38 +545,23 @@ python src/train.py "$CONFIG_FILE" \
|
|
613 |
print_step "Step 16: Pushing Model to HF Hub"
|
614 |
echo "====================================="
|
615 |
|
|
|
|
|
|
|
|
|
|
|
616 |
python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \
|
617 |
--token "$HF_TOKEN" \
|
618 |
--trackio-url "$TRACKIO_URL" \
|
619 |
--experiment-name "$EXPERIMENT_NAME" \
|
620 |
--dataset-repo "$TRACKIO_DATASET_REPO"
|
621 |
|
622 |
-
# Step 17:
|
623 |
-
print_step "Step 17:
|
624 |
-
echo "==================================="
|
625 |
-
|
626 |
-
python -c "
|
627 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
628 |
-
import torch
|
629 |
-
|
630 |
-
print('Loading uploaded model...')
|
631 |
-
model = AutoModelForCausalLM.from_pretrained('$REPO_NAME', torch_dtype=torch.float16, device_map='auto')
|
632 |
-
tokenizer = AutoTokenizer.from_pretrained('$REPO_NAME')
|
633 |
-
|
634 |
-
print('Testing model generation...')
|
635 |
-
prompt = 'Hello, how are you?'
|
636 |
-
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
637 |
-
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.7)
|
638 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
639 |
-
print(f'Prompt: {prompt}')
|
640 |
-
print(f'Response: {response}')
|
641 |
-
print('β
Model test completed successfully!')
|
642 |
-
"
|
643 |
-
|
644 |
-
# Step 18: Create summary report
|
645 |
-
print_step "Step 18: Creating Summary Report"
|
646 |
echo "===================================="
|
647 |
|
|
|
|
|
648 |
cat > training_summary.md << EOF
|
649 |
# SmolLM3 Fine-tuning Summary
|
650 |
|
@@ -665,8 +582,6 @@ fi)
|
|
665 |
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS
|
666 |
- **Learning Rate**: $LEARNING_RATE
|
667 |
- **Max Epochs**: $MAX_EPOCHS
|
668 |
-
- **Max Steps**: $MAX_STEPS
|
669 |
-
- **Total Samples**: $TOTAL_SAMPLES
|
670 |
- **Sequence Length**: $MAX_SEQ_LENGTH
|
671 |
|
672 |
## Results
|
@@ -682,7 +597,6 @@ fi)
|
|
682 |
|
683 |
## Files Created
|
684 |
- Training configuration: \`$CONFIG_FILE\`
|
685 |
-
- Dataset: \`training_dataset/\`
|
686 |
- Model checkpoint: \`/output-checkpoint/\`
|
687 |
- Training logs: \`training.log\`
|
688 |
- Summary report: \`training_summary.md\`
|
@@ -690,6 +604,10 @@ EOF
|
|
690 |
|
691 |
print_status "Summary report saved to: training_summary.md"
|
692 |
|
|
|
|
|
|
|
|
|
693 |
# Final summary
|
694 |
echo ""
|
695 |
print_header "π End-to-End Pipeline Completed Successfully!"
|
|
|
489 |
cd ../..
|
490 |
create_training_config "$CONFIG_FILE"
|
491 |
|
492 |
+
# Step 13: Dataset preparation (handled by src/data.py during training)
|
493 |
+
print_step "Step 13: Dataset Configuration"
|
494 |
+
echo "=================================="
|
495 |
|
496 |
+
print_info "Dataset will be loaded directly by src/data.py during training"
|
497 |
+
print_info "Dataset: $DATASET_NAME"
|
498 |
+
if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then
|
499 |
+
print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)"
|
500 |
+
fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
|
502 |
# Step 14: Calculate training parameters
|
503 |
print_step "Step 14: Calculating Training Parameters"
|
504 |
echo "============================================"
|
505 |
|
506 |
+
# Estimate training steps
|
507 |
EFFECTIVE_BATCH_SIZE=$((BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS))
|
|
|
|
|
|
|
|
|
508 |
echo " Effective batch size: $EFFECTIVE_BATCH_SIZE"
|
509 |
+
echo " Learning rate: $LEARNING_RATE"
|
510 |
+
echo " Max epochs: $MAX_EPOCHS"
|
511 |
+
echo " Sequence length: $MAX_SEQ_LENGTH"
|
512 |
+
echo " Training steps will be calculated by the training script"
|
513 |
|
514 |
# Step 15: Start training
|
515 |
print_step "Step 15: Starting Training"
|
516 |
echo "=============================="
|
517 |
|
518 |
+
print_info "Using existing scripts/training/train.py script with the following parameters:"
|
519 |
+
echo " Model: $MODEL_NAME"
|
520 |
+
echo " Dataset: $DATASET_NAME"
|
521 |
+
echo " Output: /output-checkpoint"
|
522 |
+
echo " Batch size: $BATCH_SIZE"
|
523 |
+
echo " Learning rate: $LEARNING_RATE"
|
524 |
+
echo " Sequence length: $MAX_SEQ_LENGTH"
|
525 |
+
|
526 |
+
# Run the existing training script
|
527 |
+
python scripts/training/train.py "$CONFIG_FILE" \
|
528 |
+
--dataset_dir "$DATASET_NAME" \
|
529 |
--out_dir /output-checkpoint \
|
530 |
--init_from scratch \
|
|
|
531 |
--batch_size $BATCH_SIZE \
|
532 |
--learning_rate $LEARNING_RATE \
|
533 |
--gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
|
|
|
545 |
print_step "Step 16: Pushing Model to HF Hub"
|
546 |
echo "====================================="
|
547 |
|
548 |
+
print_info "Using scripts/model_tonic/push_to_huggingface.py script"
|
549 |
+
echo " Checkpoint: /output-checkpoint"
|
550 |
+
echo " Repository: $REPO_NAME"
|
551 |
+
|
552 |
+
# Run the existing push script
|
553 |
python scripts/model_tonic/push_to_huggingface.py /output-checkpoint "$REPO_NAME" \
|
554 |
--token "$HF_TOKEN" \
|
555 |
--trackio-url "$TRACKIO_URL" \
|
556 |
--experiment-name "$EXPERIMENT_NAME" \
|
557 |
--dataset-repo "$TRACKIO_DATASET_REPO"
|
558 |
|
559 |
+
# Step 17: Create summary report
|
560 |
+
print_step "Step 17: Creating Summary Report"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
echo "===================================="
|
562 |
|
563 |
+
|
564 |
+
|
565 |
cat > training_summary.md << EOF
|
566 |
# SmolLM3 Fine-tuning Summary
|
567 |
|
|
|
582 |
- **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS
|
583 |
- **Learning Rate**: $LEARNING_RATE
|
584 |
- **Max Epochs**: $MAX_EPOCHS
|
|
|
|
|
585 |
- **Sequence Length**: $MAX_SEQ_LENGTH
|
586 |
|
587 |
## Results
|
|
|
597 |
|
598 |
## Files Created
|
599 |
- Training configuration: \`$CONFIG_FILE\`
|
|
|
600 |
- Model checkpoint: \`/output-checkpoint/\`
|
601 |
- Training logs: \`training.log\`
|
602 |
- Summary report: \`training_summary.md\`
|
|
|
604 |
|
605 |
print_status "Summary report saved to: training_summary.md"
|
606 |
|
607 |
+
# Clean up temporary files
|
608 |
+
print_info "Cleaning up temporary files..."
|
609 |
+
rm -f deploy_input.txt
|
610 |
+
|
611 |
# Final summary
|
612 |
echo ""
|
613 |
print_header "π End-to-End Pipeline Completed Successfully!"
|
scripts/trackio_tonic/deploy_trackio_space.py
CHANGED
@@ -30,13 +30,21 @@ class TrackioSpaceDeployer:
|
|
30 |
cmd = [
|
31 |
"huggingface-cli", "repo", "create",
|
32 |
f"{self.username}/{self.space_name}",
|
33 |
-
"--type", "space"
|
34 |
-
"--space-sdk", "gradio",
|
35 |
-
"--space-hardware", "cpu-basic"
|
36 |
]
|
37 |
|
|
|
38 |
result = subprocess.run(cmd, capture_output=True, text=True)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
if result.returncode == 0:
|
41 |
print(f"β
Space created successfully: {self.space_url}")
|
42 |
return True
|
|
|
30 |
cmd = [
|
31 |
"huggingface-cli", "repo", "create",
|
32 |
f"{self.username}/{self.space_name}",
|
33 |
+
"--type", "space"
|
|
|
|
|
34 |
]
|
35 |
|
36 |
+
# Try to create the space first
|
37 |
result = subprocess.run(cmd, capture_output=True, text=True)
|
38 |
|
39 |
+
if result.returncode != 0:
|
40 |
+
# Try alternative approach without space-specific flags
|
41 |
+
print("Retrying with basic space creation...")
|
42 |
+
cmd = [
|
43 |
+
"huggingface-cli", "repo", "create",
|
44 |
+
f"{self.username}/{self.space_name}"
|
45 |
+
]
|
46 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
47 |
+
|
48 |
if result.returncode == 0:
|
49 |
print(f"β
Space created successfully: {self.space_url}")
|
50 |
return True
|
src/config.py
CHANGED
@@ -3,9 +3,27 @@ Configuration management for SmolLM3 fine-tuning
|
|
3 |
"""
|
4 |
|
5 |
import os
|
|
|
6 |
import importlib.util
|
7 |
from typing import Any
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def get_config(config_path: str) -> SmolLM3Config:
|
11 |
"""Load configuration from file or return default"""
|
|
|
3 |
"""
|
4 |
|
5 |
import os
|
6 |
+
import sys
|
7 |
import importlib.util
|
8 |
from typing import Any
|
9 |
+
|
10 |
+
# Add the project root to Python path
|
11 |
+
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
12 |
+
if project_root not in sys.path:
|
13 |
+
sys.path.insert(0, project_root)
|
14 |
+
|
15 |
+
# Add config directory to path
|
16 |
+
config_dir = os.path.join(project_root, 'config')
|
17 |
+
if config_dir not in sys.path:
|
18 |
+
sys.path.insert(0, config_dir)
|
19 |
+
|
20 |
+
try:
|
21 |
+
from config.train_smollm3 import SmolLM3Config, get_config as get_default_config
|
22 |
+
except ImportError:
|
23 |
+
# Fallback: try direct import
|
24 |
+
import sys
|
25 |
+
sys.path.insert(0, os.path.join(project_root, 'config'))
|
26 |
+
from train_smollm3 import SmolLM3Config, get_config as get_default_config
|
27 |
|
28 |
def get_config(config_path: str) -> SmolLM3Config:
|
29 |
"""Load configuration from file or return default"""
|
src/train.py
CHANGED
@@ -16,7 +16,17 @@ from typing import Optional, Dict, Any
|
|
16 |
# Add the current directory to the path for imports
|
17 |
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
from model import SmolLM3Model
|
21 |
from data import SmolLM3Dataset
|
22 |
from trainer import SmolLM3Trainer
|
|
|
16 |
# Add the current directory to the path for imports
|
17 |
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
18 |
|
19 |
+
# Add project root to path for config imports
|
20 |
+
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
21 |
+
if project_root not in sys.path:
|
22 |
+
sys.path.insert(0, project_root)
|
23 |
+
|
24 |
+
try:
|
25 |
+
from config import get_config
|
26 |
+
except ImportError:
|
27 |
+
# Fallback: try direct import
|
28 |
+
sys.path.insert(0, os.path.join(project_root, 'src'))
|
29 |
+
from config import get_config
|
30 |
from model import SmolLM3Model
|
31 |
from data import SmolLM3Dataset
|
32 |
from trainer import SmolLM3Trainer
|
tests/test_dataset.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Test script to verify OpenHermes-FR dataset loading
|
4 |
+
"""
|
5 |
+
|
6 |
+
from datasets import load_dataset
|
7 |
+
import json
|
8 |
+
import random
|
9 |
+
|
10 |
+
def test_openhermes_fr():
|
11 |
+
"""Test loading and processing OpenHermes-FR dataset"""
|
12 |
+
|
13 |
+
print("Loading OpenHermes-FR dataset...")
|
14 |
+
try:
|
15 |
+
dataset = load_dataset('legmlai/openhermes-fr')
|
16 |
+
print(f"β
Dataset loaded successfully")
|
17 |
+
print(f" Train samples: {len(dataset['train'])}")
|
18 |
+
if 'validation' in dataset:
|
19 |
+
print(f" Validation samples: {len(dataset['validation'])}")
|
20 |
+
|
21 |
+
# Show sample structure
|
22 |
+
sample = dataset['train'][0]
|
23 |
+
print(f"\nπ Sample structure:")
|
24 |
+
for key, value in sample.items():
|
25 |
+
if isinstance(value, str) and len(value) > 100:
|
26 |
+
print(f" {key}: {value[:100]}...")
|
27 |
+
else:
|
28 |
+
print(f" {key}: {value}")
|
29 |
+
|
30 |
+
# Test conversion
|
31 |
+
print(f"\nπ Testing conversion...")
|
32 |
+
|
33 |
+
def convert_to_training_format(example):
|
34 |
+
# Handle OpenHermes-FR format specifically
|
35 |
+
if 'prompt' in example and 'accepted_completion' in example:
|
36 |
+
return {
|
37 |
+
'prompt': example['prompt'],
|
38 |
+
'completion': example['accepted_completion']
|
39 |
+
}
|
40 |
+
elif 'prompt' in example and 'completion' in example:
|
41 |
+
return {
|
42 |
+
'prompt': example['prompt'],
|
43 |
+
'completion': example['completion']
|
44 |
+
}
|
45 |
+
else:
|
46 |
+
return None
|
47 |
+
|
48 |
+
# Process first 10 examples
|
49 |
+
train_data = []
|
50 |
+
for i, example in enumerate(dataset['train'][:10]):
|
51 |
+
training_example = convert_to_training_format(example)
|
52 |
+
if training_example and training_example['prompt'] and training_example['completion']:
|
53 |
+
# Filter out bad entries
|
54 |
+
if 'bad_entry' in example and example['bad_entry']:
|
55 |
+
print(f" Skipping bad entry {i}")
|
56 |
+
continue
|
57 |
+
train_data.append(training_example)
|
58 |
+
print(f" β
Converted example {i}")
|
59 |
+
|
60 |
+
print(f"\nπ Conversion results:")
|
61 |
+
print(f" Converted: {len(train_data)} valid examples")
|
62 |
+
|
63 |
+
if train_data:
|
64 |
+
print(f"\nπ Sample converted example:")
|
65 |
+
sample = train_data[0]
|
66 |
+
print(f" Prompt: {sample['prompt'][:100]}...")
|
67 |
+
print(f" Completion: {sample['completion'][:100]}...")
|
68 |
+
|
69 |
+
# Test sampling
|
70 |
+
if len(dataset['train']) > 100:
|
71 |
+
print(f"\nπ² Testing sampling...")
|
72 |
+
random.seed(42)
|
73 |
+
sampled_indices = random.sample(range(len(dataset['train'])), 5)
|
74 |
+
print(f" Sampled indices: {sampled_indices}")
|
75 |
+
|
76 |
+
return True
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
print(f"β Error loading dataset: {e}")
|
80 |
+
return False
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
success = test_openhermes_fr()
|
84 |
+
if success:
|
85 |
+
print("\nβ
Dataset test completed successfully!")
|
86 |
+
else:
|
87 |
+
print("\nβ Dataset test failed!")
|
88 |
+
exit(1)
|
tests/test_dataset_loading.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Test script to verify dataset loading works correctly
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import json
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
def test_dataset_loading():
|
12 |
+
"""Test loading the OpenHermes-FR dataset"""
|
13 |
+
print("Testing dataset loading...")
|
14 |
+
|
15 |
+
try:
|
16 |
+
# Load the dataset
|
17 |
+
dataset = load_dataset("legmlai/openhermes-fr")
|
18 |
+
print(f"β
Dataset loaded successfully")
|
19 |
+
print(f" Train samples: {len(dataset['train'])}")
|
20 |
+
|
21 |
+
# Check the first few examples
|
22 |
+
print("\nSample examples:")
|
23 |
+
for i in range(min(3, len(dataset['train'])):
|
24 |
+
example = dataset['train'][i]
|
25 |
+
print(f"\nExample {i+1}:")
|
26 |
+
print(f" Keys: {list(example.keys())}")
|
27 |
+
print(f" Prompt: {example.get('prompt', 'N/A')[:100]}...")
|
28 |
+
print(f" Accepted completion: {example.get('accepted_completion', 'N/A')[:100]}...")
|
29 |
+
print(f" Bad entry: {example.get('bad_entry', 'N/A')}")
|
30 |
+
|
31 |
+
# Test filtering bad entries
|
32 |
+
print(f"\nFiltering bad entries...")
|
33 |
+
original_size = len(dataset['train'])
|
34 |
+
filtered_dataset = dataset['train'].filter(lambda x: not x.get('bad_entry', False))
|
35 |
+
filtered_size = len(filtered_dataset)
|
36 |
+
print(f" Original size: {original_size}")
|
37 |
+
print(f" Filtered size: {filtered_size}")
|
38 |
+
print(f" Removed: {original_size - filtered_size} bad entries")
|
39 |
+
|
40 |
+
# Test conversion to training format
|
41 |
+
print(f"\nTesting conversion to training format...")
|
42 |
+
train_data = []
|
43 |
+
for i, example in enumerate(filtered_dataset):
|
44 |
+
if i >= 5: # Just test first 5 examples
|
45 |
+
break
|
46 |
+
|
47 |
+
if 'prompt' in example and 'accepted_completion' in example:
|
48 |
+
train_data.append({
|
49 |
+
'prompt': example['prompt'],
|
50 |
+
'completion': example['accepted_completion']
|
51 |
+
})
|
52 |
+
|
53 |
+
print(f" Converted {len(train_data)} examples to training format")
|
54 |
+
|
55 |
+
# Save a small sample
|
56 |
+
os.makedirs('test_dataset', exist_ok=True)
|
57 |
+
with open('test_dataset/train.json', 'w') as f:
|
58 |
+
json.dump(train_data, f, indent=2)
|
59 |
+
|
60 |
+
print(f"β
Test completed successfully!")
|
61 |
+
print(f" Sample saved to: test_dataset/train.json")
|
62 |
+
|
63 |
+
return True
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
print(f"β Dataset loading failed: {e}")
|
67 |
+
return False
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
success = test_dataset_loading()
|
71 |
+
sys.exit(0 if success else 1)
|