File size: 9,100 Bytes
fcf2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7181190
 
 
 
fa7de39
7181190
 
 
 
 
 
fa7de39
 
 
 
 
 
 
 
 
7181190
fa7de39
7181190
fcf2981
 
 
 
 
 
 
 
 
fa7de39
 
 
 
fcf2981
 
 
 
 
 
 
 
 
 
 
c7cffbb
 
 
fcf2981
 
 
 
 
 
 
c7cffbb
 
 
 
 
 
 
 
fcf2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfcb060
 
 
 
 
 
 
 
 
 
fcf2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7181190
fcf2981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python3
"""
GPT-OSS Training Script
Specialized training script for OpenAI's GPT-OSS models
Based on the GPT-OSS fine-tuning tutorial
"""

import os
import sys
import argparse
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import LoraConfig, get_peft_model
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset

def load_gpt_oss_model_and_tokenizer(config):
    """Load GPT-OSS model and tokenizer with proper configuration"""
    
    print("Loading GPT-OSS tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(config.model_name)
    
    print("Loading GPT-OSS model with quantization...")
    
    # Import quantization config
    from transformers import BitsAndBytesConfig
    
    # Set up quantization config based on config
    if config.quantization_config and config.quantization_config.get("load_in_4bit"):
        # Use BitsAndBytesConfig for 4-bit quantization (memory optimized)
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4"
        )
    elif config.quantization_config and config.quantization_config.get("dequantize"):
        # Try to use Mxfp4Config if available (as per tutorial)
        try:
            from transformers import Mxfp4Config
            quantization_config = Mxfp4Config(dequantize=True)
        except ImportError:
            # Fallback to no quantization if Mxfp4Config not available
            print("Warning: Mxfp4Config not available, using no quantization")
            quantization_config = None
    else:
        # No quantization
        quantization_config = None
    
    # Model kwargs as per tutorial
    model_kwargs = {
        "attn_implementation": "eager",
        "torch_dtype": torch.bfloat16,
        "use_cache": False,
        "device_map": "auto",
    }
    
    # Only add quantization_config if it's not None
    if quantization_config is not None:
        model_kwargs["quantization_config"] = quantization_config
    
    model = AutoModelForCausalLM.from_pretrained(config.model_name, **model_kwargs)
    
    return model, tokenizer

def setup_lora_for_gpt_oss(model, config):
    """Setup LoRA for GPT-OSS model"""
    
    print("Setting up LoRA for GPT-OSS...")
    
    # LoRA configuration as per tutorial
    lora_config = LoraConfig(
        r=config.lora_config.get("r", 8) if config.lora_config else 8,
        lora_alpha=config.lora_config.get("lora_alpha", 16) if config.lora_config else 16,
        target_modules=config.lora_config.get("target_modules", "all-linear") if config.lora_config else "all-linear",
        target_parameters=config.lora_config.get("target_parameters", [
            "7.mlp.experts.gate_up_proj",
            "7.mlp.experts.down_proj",
            "15.mlp.experts.gate_up_proj",
            "15.mlp.experts.down_proj",
            "23.mlp.experts.gate_up_proj",
            "23.mlp.experts.down_proj",
        ]) if config.lora_config else [
            "7.mlp.experts.gate_up_proj",
            "7.mlp.experts.down_proj",
            "15.mlp.experts.gate_up_proj",
            "15.mlp.experts.down_proj",
            "23.mlp.experts.gate_up_proj",
            "23.mlp.experts.down_proj",
        ],
    )
    
    peft_model = get_peft_model(model, lora_config)
    peft_model.print_trainable_parameters()
    
    return peft_model

def load_multilingual_thinking_dataset():
    """Load the Multilingual-Thinking dataset"""
    
    print("Loading Multilingual-Thinking dataset...")
    dataset = load_dataset("HuggingFaceH4/Multilingual-Thinking", split="train")
    print(f"Dataset loaded: {len(dataset)} examples")
    
    return dataset

def setup_trackio_tracking(config):
    """Setup Trackio tracking if enabled"""
    
    if not config.enable_tracking or not config.trackio_url:
        print("Trackio tracking disabled or URL not provided")
        return None
    
    print(f"Setting up Trackio tracking: {config.trackio_url}")
    
    # Import the correct TrackioAPIClient
    import sys
    import os
    sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'trackio_tonic'))
    from trackio_api_client import TrackioAPIClient
    
    # Initialize Trackio client using the correct API
    trackio_client = TrackioAPIClient(
        space_id=config.trackio_url,
        hf_token=config.trackio_token
    )
    
    return trackio_client

def create_sft_config(config):
    """Create SFTConfig for GPT-OSS training"""
    
    print("Creating SFT configuration...")
    
    sft_config = SFTConfig(
        learning_rate=config.learning_rate,
        gradient_checkpointing=True,
        num_train_epochs=1,  # Single epoch as per tutorial
        logging_steps=config.logging_steps,
        per_device_train_batch_size=config.batch_size,
        gradient_accumulation_steps=config.gradient_accumulation_steps,
        max_length=config.max_seq_length,
        warmup_ratio=0.03,
        lr_scheduler_type="cosine_with_min_lr",
        lr_scheduler_kwargs={"min_lr_rate": 0.1},
        output_dir="gpt-oss-20b-multilingual-reasoner",
        report_to="trackio" if config.enable_tracking else None,
        push_to_hub=True,
    )
    
    return sft_config

def train_gpt_oss(config_path, experiment_name, output_dir, trackio_url, trainer_type="sft"):
    """Main training function for GPT-OSS"""
    
    print("=== GPT-OSS Training Pipeline ===")
    print(f"Config: {config_path}")
    print(f"Experiment: {experiment_name}")
    print(f"Output: {output_dir}")
    print(f"Trackio: {trackio_url}")
    print(f"Trainer: {trainer_type}")
    
    # Load configuration
    if os.path.exists(config_path):
        import importlib.util
        spec = importlib.util.spec_from_file_location("config_module", config_path)
        config_module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(config_module)
        
        if hasattr(config_module, 'config'):
            config = config_module.config
        else:
            # Try to find a config class
            for attr_name in dir(config_module):
                attr = getattr(config_module, attr_name)
                if hasattr(attr, 'model_name') and ('gpt_oss' in attr.model_name.lower() or 'GPTOSS' in attr_name):
                    config = attr
                    break
            else:
                raise ValueError(f"No GPT-OSS configuration found in {config_path}")
    else:
        raise FileNotFoundError(f"Configuration file not found: {config_path}")
    
    # Update config with runtime parameters
    config.experiment_name = experiment_name
    config.trackio_url = trackio_url
    config.trainer_type = trainer_type
    
    # Load model and tokenizer
    model, tokenizer = load_gpt_oss_model_and_tokenizer(config)
    
    # Setup LoRA
    peft_model = setup_lora_for_gpt_oss(model, config)
    
    # Load dataset
    dataset = load_multilingual_thinking_dataset()
    
    # Setup Trackio tracking
    trackio_client = setup_trackio_tracking(config)
    
    # Create SFT configuration
    sft_config = create_sft_config(config)
    
    # Create trainer
    print("Creating SFT trainer...")
    trainer = SFTTrainer(
        model=peft_model,
        args=sft_config,
        train_dataset=dataset,
        processing_class=tokenizer,
    )
    
    # Start training
    print("Starting GPT-OSS training...")
    trainer.train()
    
    # Save model
    print("Saving trained model...")
    trainer.save_model(output_dir)
    
    # Push to hub if enabled
    if sft_config.push_to_hub:
        print("Pushing model to Hugging Face Hub...")
        trainer.push_to_hub(dataset_name="HuggingFaceH4/Multilingual-Thinking")
    
    print("GPT-OSS training completed successfully!")
    
    return trainer

def main():
    parser = argparse.ArgumentParser(description="GPT-OSS Training Script")
    parser.add_argument("--config", required=True, help="Path to configuration file")
    parser.add_argument("--experiment-name", required=True, help="Experiment name")
    parser.add_argument("--output-dir", required=True, help="Output directory for checkpoints")
    parser.add_argument("--trackio-url", help="Trackio URL for monitoring")
    parser.add_argument("--trainer-type", default="sft", choices=["sft", "dpo"], help="Trainer type")
    
    args = parser.parse_args()
    
    # Validate arguments
    if not os.path.exists(args.config):
        print(f"Error: Configuration file not found: {args.config}")
        sys.exit(1)
    
    # Create output directory
    os.makedirs(args.output_dir, exist_ok=True)
    
    try:
        train_gpt_oss(
            config_path=args.config,
            experiment_name=args.experiment_name,
            output_dir=args.output_dir,
            trackio_url=args.trackio_url,
            trainer_type=args.trainer_type
        )
    except Exception as e:
        print(f"Error during training: {e}")
        sys.exit(1)

if __name__ == "__main__":
    main()