Spaces:
Running
Running
File size: 31,772 Bytes
fcf2981 97dacc7 fcf2981 598357a fcf2981 598357a 0fa6045 fcf2981 c3ab72f fcf2981 7181190 fa7de39 7181190 fa7de39 7181190 fa7de39 7181190 fcf2981 fa7de39 fcf2981 c7cffbb fcf2981 c7cffbb fcf2981 59e57ff fcf2981 59e57ff 0fa6045 59e57ff 0fa6045 59e57ff 0fa6045 59e57ff fcf2981 0fa6045 fcf2981 dfcb060 fcf2981 59e57ff c346dad 59e57ff c346dad 59e57ff c346dad 59e57ff c346dad 59e57ff c346dad 59e57ff c346dad 59e57ff c346dad 59e57ff fcf2981 97dacc7 59e57ff 97dacc7 59e57ff 97dacc7 59e57ff 97dacc7 59e57ff 97dacc7 59e57ff 97dacc7 c346dad 59e57ff 97dacc7 c346dad 59e57ff 97dacc7 59e57ff 97dacc7 59e57ff 97dacc7 59e57ff c346dad 97dacc7 c346dad 59e57ff 97dacc7 59e57ff 97dacc7 59e57ff 97dacc7 c346dad 97dacc7 fcf2981 7181190 fcf2981 59e57ff 0fa6045 fcf2981 59e57ff fcf2981 665844a 0fa6045 665844a 0fa6045 665844a 0fa6045 665844a 0fa6045 665844a 0fa6045 665844a 0fa6045 665844a 0fa6045 fcf2981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
#!/usr/bin/env python3
"""
GPT-OSS Training Script
Specialized training script for OpenAI's GPT-OSS models
Based on the GPT-OSS fine-tuning tutorial
"""
import os
import sys
import argparse
import inspect
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from peft import LoraConfig, get_peft_model
from trl import SFTTrainer
try:
from trl import DPOTrainer
except Exception: # pragma: no cover - optional import depending on TRL version
DPOTrainer = None
from datasets import load_dataset
from pathlib import Path
# Ensure project root and config package are importable for configs that do `from config...` imports
project_root = Path(__file__).resolve().parents[2]
if str(project_root) not in sys.path:
sys.path.insert(0, str(project_root))
config_dir = project_root / "config"
if str(config_dir) not in sys.path:
sys.path.insert(0, str(config_dir))
def load_gpt_oss_model_and_tokenizer(config):
"""Load GPT-OSS model and tokenizer with proper configuration"""
print("Loading GPT-OSS tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
print("Loading GPT-OSS model with quantization...")
# Import quantization config
from transformers import BitsAndBytesConfig
# Set up quantization config based on config
if config.quantization_config and config.quantization_config.get("load_in_4bit"):
# Use BitsAndBytesConfig for 4-bit quantization (memory optimized)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
elif config.quantization_config and config.quantization_config.get("dequantize"):
# Try to use Mxfp4Config if available (as per tutorial)
try:
from transformers import Mxfp4Config
quantization_config = Mxfp4Config(dequantize=True)
except ImportError:
# Fallback to no quantization if Mxfp4Config not available
print("Warning: Mxfp4Config not available, using no quantization")
quantization_config = None
else:
# No quantization
quantization_config = None
# Model kwargs as per tutorial
model_kwargs = {
"attn_implementation": "eager",
"torch_dtype": torch.bfloat16,
"use_cache": False,
"device_map": "auto",
}
# Only add quantization_config if it's not None
if quantization_config is not None:
model_kwargs["quantization_config"] = quantization_config
model = AutoModelForCausalLM.from_pretrained(config.model_name, **model_kwargs)
return model, tokenizer
def setup_lora_for_gpt_oss(model, config):
"""Setup LoRA for GPT-OSS model"""
print("Setting up LoRA for GPT-OSS...")
# LoRA configuration as per tutorial
lora_config = LoraConfig(
r=config.lora_config.get("r", 8) if config.lora_config else 8,
lora_alpha=config.lora_config.get("lora_alpha", 16) if config.lora_config else 16,
target_modules=config.lora_config.get("target_modules", "all-linear") if config.lora_config else "all-linear",
target_parameters=config.lora_config.get("target_parameters", [
"7.mlp.experts.gate_up_proj",
"7.mlp.experts.down_proj",
"15.mlp.experts.gate_up_proj",
"15.mlp.experts.down_proj",
"23.mlp.experts.gate_up_proj",
"23.mlp.experts.down_proj",
]) if config.lora_config else [
"7.mlp.experts.gate_up_proj",
"7.mlp.experts.down_proj",
"15.mlp.experts.gate_up_proj",
"15.mlp.experts.down_proj",
"23.mlp.experts.gate_up_proj",
"23.mlp.experts.down_proj",
],
)
peft_model = get_peft_model(model, lora_config)
peft_model.print_trainable_parameters()
return peft_model
def load_dataset_from_config(config):
"""Load dataset based on configuration"""
dataset_name = getattr(config, 'dataset_name', 'HuggingFaceH4/Multilingual-Thinking')
dataset_split = getattr(config, 'dataset_split', 'train')
dataset_config = getattr(config, 'dataset_config', None)
print(f"Loading dataset: {dataset_name}")
print(f"Dataset split: {dataset_split}")
if dataset_config:
print(f"Dataset config: {dataset_config}")
# Load the dataset
if dataset_config:
dataset = load_dataset(dataset_name, dataset_config, split=dataset_split)
else:
dataset = load_dataset(dataset_name, split=dataset_split)
print(f"Original dataset size: {len(dataset)} examples")
# Apply filtering based on configuration
dataset = apply_dataset_filtering(dataset, config)
# Apply dataset processing based on format
dataset = process_dataset_format(dataset, config)
print(f"Final dataset size: {len(dataset)} examples")
return dataset
def apply_dataset_filtering(dataset, config):
"""Apply filtering based on configuration"""
# Filter bad entries if specified
if getattr(config, 'filter_bad_entries', False):
bad_entry_field = getattr(config, 'bad_entry_field', 'bad_entry')
bad_prompt_field = getattr(config, 'bad_prompt_field', 'bad_prompt_detected')
bad_response_field = getattr(config, 'bad_response_field', 'bad_response_detected')
original_size = len(dataset)
# Filter out bad entries
if bad_entry_field in dataset.column_names:
dataset = dataset.filter(lambda x: not x.get(bad_entry_field, False))
print(f"Filtered {original_size - len(dataset)} bad entries")
# Filter out bad prompts
if bad_prompt_field in dataset.column_names:
dataset = dataset.filter(lambda x: not x.get(bad_prompt_field, False))
print(f"Filtered bad prompts, remaining: {len(dataset)} examples")
# Filter out bad responses
if bad_response_field in dataset.column_names:
dataset = dataset.filter(lambda x: not x.get(bad_response_field, False))
print(f"Filtered bad responses, remaining: {len(dataset)} examples")
# Apply length filtering
min_length = getattr(config, 'min_length', 10)
max_length = getattr(config, 'max_length', None)
input_field = getattr(config, 'input_field', 'prompt')
target_field = getattr(config, 'target_field', 'accepted_completion')
if min_length > 0 or max_length:
def length_filter(example):
input_len = len(example.get(input_field, ''))
target_len = len(example.get(target_field, ''))
total_len = input_len + target_len
if total_len < min_length:
return False
if max_length and total_len > max_length:
return False
return True
original_size = len(dataset)
dataset = dataset.filter(length_filter)
print(f"Length filtering: {original_size} -> {len(dataset)} examples")
# Apply sampling if specified
max_samples = getattr(config, 'max_samples', None)
if max_samples and len(dataset) > max_samples:
dataset = dataset.shuffle(seed=42).select(range(max_samples))
print(f"Sampled {max_samples} examples from dataset")
return dataset
def format_gpt_oss_harmony(prompt, completion, add_eos_token=True):
"""
Format data for GPT-OSS Harmony format following the exact template structure.
Based on: https://huggingface.co/openai/gpt-oss-20b/raw/main/chat_template.jinja
"""
# GPT-OSS Harmony format structure (exact template compliance)
# User message: <|start|>user<|message|>content<|end|>
# Assistant message: <|start|>assistant<|channel|>final<|message|>content<|end|> (inference)
# Assistant message: <|start|>assistant<|channel|>final<|message|>content<|return|> (training)
harmony_text = f"<|start|>user<|message|>{prompt}<|end|><|start|>assistant<|channel|>final<|message|>{completion}"
if add_eos_token:
# Use <|return|> for training as per template specification
# This indicates the end of generation in training
harmony_text += "<|return|>"
else:
# Use <|end|> for inference
harmony_text += "<|end|>"
return harmony_text
def format_gpt_oss_harmony_prompt(prompt: str) -> str:
"""Prefix-only Harmony prompt up to assistant content marker for DPO."""
return f"<|start|>user<|message|>{prompt}<|end|><|start|>assistant<|channel|>final<|message|>"
def process_dataset_format(dataset, config):
"""Process dataset based on format configuration with exact GPT-OSS Harmony compliance"""
dataset_format = getattr(config, 'dataset_format', 'openhermes_fr')
input_field = getattr(config, 'input_field', 'prompt')
target_field = getattr(config, 'target_field', 'accepted_completion')
concatenate_fields = getattr(config, 'concatenate_fields', True)
field_separator = getattr(config, 'field_separator', '\n\n### Response:\n')
add_eos_token = getattr(config, 'add_eos_token', True)
use_harmony_format = getattr(config, 'use_harmony_format', True)
trainer_type = getattr(config, 'trainer_type', 'sft')
print(f"Processing dataset format: {dataset_format}")
print(f"Input field: {input_field}, Target field: {target_field}")
print(f"GPT-OSS Harmony Format: {'Enabled' if use_harmony_format else 'Disabled'}")
# Preference-format for DPO training (chosen/rejected pairs)
if trainer_type == 'dpo':
chosen_field = getattr(config, 'chosen_field', None)
rejected_field = getattr(config, 'rejected_field', None)
if dataset_format == 'preference':
# Expect columns present; optionally reformat to ensure only necessary columns
def id_map(example):
prompt_val = example.get(input_field, '')
chosen_val = example.get('chosen', example.get(chosen_field or 'chosen', ''))
rejected_val = example.get('rejected', example.get(rejected_field or 'rejected', ''))
if use_harmony_format:
prompt_text = format_gpt_oss_harmony_prompt(prompt_val)
chosen_text = (chosen_val or '') + ("<|return|>" if add_eos_token else '')
rejected_text = (rejected_val or '') + ("<|return|>" if add_eos_token else '')
return {"prompt": prompt_text, "chosen": chosen_text, "rejected": rejected_text}
return {"prompt": prompt_val, "chosen": chosen_val, "rejected": rejected_val}
keep_cols = [c for c in ['prompt', 'chosen', 'rejected'] if c in dataset.column_names]
dataset = dataset.map(id_map, remove_columns=dataset.column_names if keep_cols else dataset.column_names)
return dataset
# Custom preference mapping via configured field names
if chosen_field and rejected_field:
def to_pref(example):
prompt_val = example.get(input_field, '')
chosen_val = example.get(chosen_field, '')
rejected_val = example.get(rejected_field, '')
if use_harmony_format:
prompt_text = format_gpt_oss_harmony_prompt(prompt_val)
chosen_text = (chosen_val or '') + ("<|return|>" if add_eos_token else '')
rejected_text = (rejected_val or '') + ("<|return|>" if add_eos_token else '')
return {"prompt": prompt_text, "chosen": chosen_text, "rejected": rejected_text}
return {"prompt": prompt_val, "chosen": chosen_val, "rejected": rejected_val}
dataset = dataset.map(to_pref, remove_columns=dataset.column_names)
return dataset
# If we reach here, we don't have required fields for DPO
raise ValueError("DPO training requires preference data. Please set dataset_format='preference' with 'prompt', 'chosen', 'rejected' columns, or specify 'chosen_field' and 'rejected_field' in the config.")
if dataset_format == "openhermes_fr":
# Process OpenHermes-FR format: prompt + accepted_completion
def format_openhermes_fr(example):
prompt = example.get(input_field, '')
completion = example.get(target_field, '')
if concatenate_fields:
if use_harmony_format:
# Use exact GPT-OSS Harmony format from template
text = format_gpt_oss_harmony(prompt, completion, add_eos_token)
else:
# Fallback to standard format with separator
text = prompt + field_separator + completion
if add_eos_token:
text += "</s>"
return {"text": text}
else:
# Keep separate for more advanced training setups
return {
"input": prompt,
"output": completion
}
dataset = dataset.map(format_openhermes_fr, remove_columns=dataset.column_names)
elif dataset_format == "messages":
# Process messages format (like HuggingFaceH4/Multilingual-Thinking)
def format_messages(example):
messages = example.get(input_field, [])
if use_harmony_format and len(messages) >= 2:
# Extract user and assistant messages for harmony format
user_message = ""
assistant_message = ""
for message in messages:
role = message.get("role", "")
content = message.get("content", "")
if role == "user":
user_message = content
elif role == "assistant":
assistant_message = content
if user_message and assistant_message:
# Use GPT-OSS Harmony format
text = format_gpt_oss_harmony(user_message, assistant_message, add_eos_token)
else:
# Fallback to simple concatenation
text = ""
for message in messages:
role = message.get("role", "")
content = message.get("content", "")
text += f"{role}: {content}\n"
if add_eos_token:
text += "</s>"
else:
# Standard format - convert messages to simple text
text = ""
for message in messages:
role = message.get("role", "")
content = message.get("content", "")
text += f"{role}: {content}\n"
if add_eos_token:
text += "</s>"
return {"text": text}
dataset = dataset.map(format_messages, remove_columns=dataset.column_names)
elif dataset_format == "text":
# Process plain text format
text_field = input_field
def format_text(example):
text = example.get(text_field, '')
if add_eos_token:
text += "</s>"
return {"text": text}
dataset = dataset.map(format_text, remove_columns=dataset.column_names)
elif dataset_format == "custom":
# Custom format - user handles this in their config
print("Using custom dataset format - no automatic processing")
return dataset
def split_dataset(dataset, config):
"""Create train/validation/test splits from a single dataset.
Defaults to 1% eval and 1% test if not specified.
"""
from datasets import Dataset
if not isinstance(dataset, Dataset):
# If it's already a DatasetDict, try to use its splits
try:
train_split = dataset["train"]
eval_split = dataset.get("validation") or dataset.get("eval")
test_split = dataset.get("test")
return train_split, eval_split, test_split
except Exception:
pass
eval_ratio = getattr(config, 'eval_ratio', 0.01)
test_ratio = getattr(config, 'test_ratio', 0.01)
# Clamp ratios to sane bounds
try:
eval_ratio = max(0.0, float(eval_ratio))
test_ratio = max(0.0, float(test_ratio))
if eval_ratio + test_ratio >= 0.9:
# Avoid extreme splits; cap combined at 0.2
scale = 0.2 / max(1e-9, (eval_ratio + test_ratio))
eval_ratio *= scale
test_ratio *= scale
except Exception:
eval_ratio, test_ratio = 0.01, 0.01
# No eval/test requested
if eval_ratio <= 0 and test_ratio <= 0:
return dataset, None, None
ds_shuffled = dataset.shuffle(seed=42)
# First carve out test split
if test_ratio > 0:
split1 = ds_shuffled.train_test_split(test_size=test_ratio, seed=42)
train_part = split1["train"]
test_split = split1["test"]
else:
train_part = ds_shuffled
test_split = None
# Then carve out eval from remaining train
if eval_ratio > 0:
remaining_fraction = 1.0 - test_ratio
# Convert global eval fraction to fraction of remaining pool
relative_eval = eval_ratio / remaining_fraction if remaining_fraction > 0 else eval_ratio
split2 = train_part.train_test_split(test_size=relative_eval, seed=42)
train_split = split2["train"]
eval_split = split2["test"]
else:
train_split = train_part
eval_split = None
# Log sizes
try:
print(f"Created splits -> train: {len(train_split)}, eval: {len(eval_split) if eval_split else 0}, test: {len(test_split) if test_split else 0}")
except Exception:
pass
return train_split, eval_split, test_split
def setup_trackio_tracking(config):
"""Setup Trackio tracking if enabled"""
if not config.enable_tracking or not config.trackio_url:
print("Trackio tracking disabled or URL not provided")
return None
print(f"Setting up Trackio tracking: {config.trackio_url}")
# Import the correct TrackioAPIClient
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'trackio_tonic'))
from trackio_api_client import TrackioAPIClient
# Initialize Trackio client using the correct API
trackio_client = TrackioAPIClient(
space_id=config.trackio_url,
hf_token=config.trackio_token
)
return trackio_client
def create_sft_config(config, output_dir):
"""Create enhanced SFTConfig for GPT-OSS training"""
print("Creating enhanced SFT configuration...")
# Helper coercion utilities to guarantee numeric types
def _as_int(value, default):
if value is None:
return int(default)
try:
return int(value)
except Exception:
return int(default)
def _as_float(value, default):
if value is None:
return float(default)
try:
return float(value)
except Exception:
return float(default)
# Extract training parameters from config with enhanced defaults and coercion
num_train_epochs = _as_float(getattr(config, 'num_train_epochs', 1.0), 1.0)
# Transformers expects max_steps default -1 (disabled). Some code compares > 0
raw_max_steps = getattr(config, 'max_steps', None)
max_steps = _as_int(raw_max_steps if raw_max_steps is not None else -1, -1)
warmup_ratio = _as_float(getattr(config, 'warmup_ratio', 0.03), 0.03)
# Ensure warmup_steps is an int; default 0 to avoid None comparisons in schedulers
warmup_steps = _as_int(getattr(config, 'warmup_steps', 0), 0)
# Learning rate configuration
learning_rate = _as_float(getattr(config, 'learning_rate', 2e-4), 2e-4)
lr_scheduler_type = getattr(config, 'scheduler', 'cosine_with_min_lr')
# Batch configuration
per_device_train_batch_size = _as_int(getattr(config, 'batch_size', 2), 2)
per_device_eval_batch_size = _as_int(getattr(config, 'eval_batch_size', per_device_train_batch_size), per_device_train_batch_size)
gradient_accumulation_steps = _as_int(getattr(config, 'gradient_accumulation_steps', 1), 1)
# Evaluation and logging
eval_strategy = getattr(config, 'eval_strategy', 'steps')
eval_steps = _as_int(getattr(config, 'eval_steps', 100), 100)
eval_accumulation_steps = _as_int(getattr(config, 'eval_accumulation_steps', 1), 1)
logging_steps = _as_int(getattr(config, 'logging_steps', 10), 10)
# Saving configuration
save_strategy = getattr(config, 'save_strategy', 'steps')
save_steps = _as_int(getattr(config, 'save_steps', 500), 500)
save_total_limit = _as_int(getattr(config, 'save_total_limit', 3), 3)
# Mixed precision
fp16 = bool(getattr(config, 'fp16', False))
bf16 = bool(getattr(config, 'bf16', True))
tf32 = bool(getattr(config, 'tf32', False))
# Regularization
weight_decay = _as_float(getattr(config, 'weight_decay', 0.01), 0.01)
max_grad_norm = _as_float(getattr(config, 'max_grad_norm', 1.0), 1.0)
# HuggingFace Hub integration
push_to_hub = getattr(config, 'push_to_hub', False)
print(f" • Epochs: {num_train_epochs}")
print(f" • Learning rate: {learning_rate}")
print(f" • Batch size: {per_device_train_batch_size}")
print(f" • Gradient accumulation: {gradient_accumulation_steps}")
print(f" • Effective batch size: {per_device_train_batch_size * gradient_accumulation_steps}")
# Build kwargs dynamically to be compatible across transformers versions
ta_kwargs = {
# Training duration
"num_train_epochs": num_train_epochs,
"max_steps": max_steps,
# Learning rate
"learning_rate": learning_rate,
"lr_scheduler_type": lr_scheduler_type,
"warmup_ratio": warmup_ratio,
"warmup_steps": warmup_steps,
# Batch configuration
"per_device_train_batch_size": per_device_train_batch_size,
"per_device_eval_batch_size": per_device_eval_batch_size,
"gradient_accumulation_steps": gradient_accumulation_steps,
# Model configuration
"gradient_checkpointing": getattr(config, 'use_gradient_checkpointing', True),
# Mixed precision
"fp16": fp16,
"bf16": bf16,
# Some versions support tf32
"tf32": tf32 if 'tf32' in TrainingArguments.__init__.__code__.co_varnames else None,
# Regularization
"weight_decay": weight_decay,
"max_grad_norm": max_grad_norm,
# Evaluation (name may vary across versions)
"evaluation_strategy": eval_strategy,
"eval_steps": eval_steps,
"eval_accumulation_steps": eval_accumulation_steps,
# Logging
"logging_steps": logging_steps,
# Saving
"save_strategy": save_strategy,
"save_steps": save_steps,
"save_total_limit": save_total_limit,
# Output
"output_dir": output_dir,
# Data loading
"dataloader_num_workers": _as_int(getattr(config, 'dataloader_num_workers', 4), 4),
"dataloader_pin_memory": getattr(config, 'dataloader_pin_memory', True),
# Optional in some versions
"dataloader_prefetch_factor": _as_int(getattr(config, 'dataloader_prefetch_factor', 2), 2),
# Performance
"group_by_length": getattr(config, 'group_by_length', True),
"remove_unused_columns": getattr(config, 'remove_unused_columns', True),
# HuggingFace Hub
"push_to_hub": push_to_hub,
# Monitoring
"report_to": ("trackio" if getattr(config, 'enable_tracking', False) else None),
}
# Drop any None-valued kwargs
ta_kwargs = {k: v for k, v in ta_kwargs.items() if v is not None}
# Adapt to transformers versions where 'evaluation_strategy' was renamed
try:
ta_sig = inspect.signature(TrainingArguments.__init__)
param_names = set(ta_sig.parameters.keys())
except Exception:
param_names = set()
if "evaluation_strategy" not in param_names and "eval_strategy" in param_names:
# Move value to 'eval_strategy'
ta_kwargs["eval_strategy"] = ta_kwargs.pop("evaluation_strategy")
elif "evaluation_strategy" not in param_names:
# If neither is supported, drop it
ta_kwargs.pop("evaluation_strategy", None)
# Remove any kwargs not supported by current transformers version
if param_names:
unsupported = [k for k in ta_kwargs.keys() if k not in param_names]
for k in unsupported:
ta_kwargs.pop(k, None)
sft_config = TrainingArguments(**ta_kwargs)
return sft_config
def train_gpt_oss(config_path, experiment_name, output_dir, trackio_url, trainer_type="sft"):
"""Main training function for GPT-OSS"""
print("=== GPT-OSS Training Pipeline ===")
print(f"Config: {config_path}")
print(f"Experiment: {experiment_name}")
print(f"Output: {output_dir}")
print(f"Trackio: {trackio_url}")
print(f"Trainer: {trainer_type}")
# Load configuration
if os.path.exists(config_path):
import importlib.util
spec = importlib.util.spec_from_file_location("config_module", config_path)
config_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config_module)
if hasattr(config_module, 'config'):
config = config_module.config
else:
# Try to find a config class
for attr_name in dir(config_module):
attr = getattr(config_module, attr_name)
if hasattr(attr, 'model_name') and ('gpt_oss' in attr.model_name.lower() or 'GPTOSS' in attr_name):
config = attr
break
else:
raise ValueError(f"No GPT-OSS configuration found in {config_path}")
else:
raise FileNotFoundError(f"Configuration file not found: {config_path}")
# Update config with runtime parameters
config.experiment_name = experiment_name
config.trackio_url = trackio_url
config.trainer_type = trainer_type
# Load model and tokenizer
model, tokenizer = load_gpt_oss_model_and_tokenizer(config)
# Setup LoRA
peft_model = setup_lora_for_gpt_oss(model, config)
# Load dataset
dataset = load_dataset_from_config(config)
# Split into train/eval/test
train_dataset, eval_dataset, test_dataset = split_dataset(dataset, config)
# Setup Trackio tracking
trackio_client = setup_trackio_tracking(config)
# Create SFT configuration
sft_config = create_sft_config(config, output_dir)
# Create trainer with version-robust kwargs
if trainer_type == 'dpo':
if DPOTrainer is None:
raise RuntimeError("DPOTrainer is not available in this TRL version. Please upgrade 'trl'.")
print("Creating DPO trainer...")
try:
dpo_sig = inspect.signature(DPOTrainer.__init__)
dpo_params = set(dpo_sig.parameters.keys())
except Exception:
dpo_params = {"model", "args", "train_dataset", "tokenizer", "beta", "prompt_column", "chosen_column", "rejected_column"}
dpo_kwargs = {
"model": peft_model,
"args": sft_config,
"train_dataset": train_dataset,
"beta": getattr(config, 'dpo_beta', 0.1),
}
if "tokenizer" in dpo_params:
dpo_kwargs["tokenizer"] = tokenizer
elif "processing_class" in dpo_params:
dpo_kwargs["processing_class"] = tokenizer
if "prompt_column" in dpo_params:
dpo_kwargs["prompt_column"] = "prompt"
if "chosen_column" in dpo_params:
dpo_kwargs["chosen_column"] = "chosen"
if "rejected_column" in dpo_params:
dpo_kwargs["rejected_column"] = "rejected"
# Remove Nones
dpo_kwargs = {k: v for k, v in dpo_kwargs.items() if v is not None}
# Pass eval dataset if supported
if "eval_dataset" in dpo_params and eval_dataset is not None:
dpo_kwargs["eval_dataset"] = eval_dataset
trainer = DPOTrainer(**dpo_kwargs)
else:
print("Creating SFT trainer...")
try:
sft_sig = inspect.signature(SFTTrainer.__init__)
sft_params = set(sft_sig.parameters.keys())
except Exception:
sft_params = {"model", "args", "train_dataset", "tokenizer", "dataset_text_field", "max_seq_length"}
sft_kwargs = {
"model": peft_model,
"args": sft_config,
"train_dataset": train_dataset,
}
# Prefer passing tokenizer if supported; otherwise try processing_class
if "tokenizer" in sft_params:
sft_kwargs["tokenizer"] = tokenizer
elif "processing_class" in sft_params:
sft_kwargs["processing_class"] = tokenizer
# Pass dataset text field if supported (we produced a 'text' column)
if "dataset_text_field" in sft_params:
sft_kwargs["dataset_text_field"] = "text"
# Pass max sequence length if supported
if "max_seq_length" in sft_params:
sft_kwargs["max_seq_length"] = getattr(config, 'max_seq_length', 2048)
# Remove any None values
sft_kwargs = {k: v for k, v in sft_kwargs.items() if v is not None}
# Attach eval_dataset if supported
if "eval_dataset" in sft_params and eval_dataset is not None:
sft_kwargs["eval_dataset"] = eval_dataset
trainer = SFTTrainer(**sft_kwargs)
# Start training
print("Starting GPT-OSS training...")
trainer.train()
# Save model
print("Saving trained model...")
trainer.save_model(output_dir)
# Push to hub if enabled
if sft_config.push_to_hub:
print("Pushing model to Hugging Face Hub...")
trainer.push_to_hub(dataset_name="HuggingFaceH4/Multilingual-Thinking")
print("GPT-OSS training completed successfully!")
return trainer
def main():
parser = argparse.ArgumentParser(description="GPT-OSS Training Script")
parser.add_argument("--config", required=True, help="Path to configuration file")
parser.add_argument("--experiment-name", required=True, help="Experiment name")
parser.add_argument("--output-dir", required=True, help="Output directory for checkpoints")
parser.add_argument("--trackio-url", help="Trackio URL for monitoring")
parser.add_argument("--trainer-type", default="sft", choices=["sft", "dpo"], help="Trainer type")
args = parser.parse_args()
# Validate arguments
if not os.path.exists(args.config):
print(f"Error: Configuration file not found: {args.config}")
sys.exit(1)
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
try:
train_gpt_oss(
config_path=args.config,
experiment_name=args.experiment_name,
output_dir=args.output_dir,
trackio_url=args.trackio_url,
trainer_type=args.trainer_type
)
except Exception as e:
print(f"Error during training: {e}")
sys.exit(1)
if __name__ == "__main__":
main() |