Made the view by category section faster
#5
by
MihanTilk
- opened
app.py
CHANGED
@@ -135,7 +135,22 @@ if uploaded_file:
|
|
135 |
|
136 |
# ----------------- Classification -----------------
|
137 |
with st.spinner("π Classifying news articles..."):
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
st.success("β
Classification Complete!")
|
141 |
st.write("π Classified Results:", df[['content', 'class']].head())
|
@@ -235,41 +250,28 @@ if uploaded_file:
|
|
235 |
st.warning("Date parsing failed")
|
236 |
|
237 |
# ----------------- News Category Explorer -----------------
|
|
|
238 |
st.subheader("π Explore News by Category")
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
for i, category in enumerate(categories):
|
260 |
-
with cols[i]:
|
261 |
-
if st.button(category, key=f"btn_{category}"):
|
262 |
-
# Create pop-up window
|
263 |
-
with st.popover(f"π° Articles in {category}", use_container_width=True):
|
264 |
-
st.markdown(f"### {category} Articles")
|
265 |
-
articles = category_articles[category]
|
266 |
-
|
267 |
-
# Display articles with expandable content
|
268 |
-
for idx, row in articles.iterrows():
|
269 |
-
with st.expander(f"Article {idx + 1}: {row['content'][:50]}...", expanded=False):
|
270 |
-
st.write(row['content'])
|
271 |
-
st.caption(f"Classification confidence: {row['confidence']:.2f}")
|
272 |
-
|
273 |
# ----------------- Footer -----------------
|
274 |
st.markdown("---")
|
275 |
st.markdown("<p style='text-align:center; color:#666;'>π Built with using Streamlit & Hugging Face</p>", unsafe_allow_html=True)
|
|
|
135 |
|
136 |
# ----------------- Classification -----------------
|
137 |
with st.spinner("π Classifying news articles..."):
|
138 |
+
# Get full classification results (label + score)
|
139 |
+
classification_results = df['cleaned_text'].apply(lambda text: classifier(text)[0])
|
140 |
+
|
141 |
+
# Store all classification data in the dataframe
|
142 |
+
df['class'] = classification_results.apply(lambda x: x['label'])
|
143 |
+
df['confidence'] = classification_results.apply(lambda x: x['score'])
|
144 |
+
|
145 |
+
|
146 |
+
# Cache the categorized articles in session state
|
147 |
+
@st.cache_data
|
148 |
+
def get_category_articles(_df):
|
149 |
+
return {category: _df[_df['class'] == category] for category in _df['class'].unique()}
|
150 |
+
|
151 |
+
|
152 |
+
st.session_state.category_articles = get_category_articles(df)
|
153 |
+
st.session_state.classified_df = df # Store the full classified dataframe
|
154 |
|
155 |
st.success("β
Classification Complete!")
|
156 |
st.write("π Classified Results:", df[['content', 'class']].head())
|
|
|
250 |
st.warning("Date parsing failed")
|
251 |
|
252 |
# ----------------- News Category Explorer -----------------
|
253 |
+
|
254 |
st.subheader("π Explore News by Category")
|
255 |
|
256 |
+
if 'category_articles' in st.session_state:
|
257 |
+
categories = st.session_state.classified_df['class'].unique()
|
258 |
+
cols = st.columns(min(5, len(categories)))
|
259 |
+
|
260 |
+
for i, category in enumerate(categories):
|
261 |
+
with cols[i % len(cols)]:
|
262 |
+
if st.button(category, key=f"btn_{category}"):
|
263 |
+
with st.popover(f"π° {category} Articles", use_container_width=True):
|
264 |
+
st.markdown(f"### {category} Articles")
|
265 |
+
articles = st.session_state.category_articles[category]
|
266 |
+
|
267 |
+
with st.container(height=600):
|
268 |
+
for idx, row in articles.iterrows():
|
269 |
+
with st.expander(f"Article {idx + 1}", expanded=False):
|
270 |
+
st.write(row['content'])
|
271 |
+
st.caption(f"Confidence: {row['confidence']:.2f}")
|
272 |
+
else:
|
273 |
+
st.warning("Classification data not found. Please upload and classify a file first.")
|
274 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
# ----------------- Footer -----------------
|
276 |
st.markdown("---")
|
277 |
st.markdown("<p style='text-align:center; color:#666;'>π Built with using Streamlit & Hugging Face</p>", unsafe_allow_html=True)
|