File size: 9,640 Bytes
740b2dc
 
e85061a
740b2dc
 
 
e85061a
 
 
 
 
 
 
 
 
 
 
 
 
740b2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529a69e
 
 
 
 
740b2dc
 
 
 
 
b76d6c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740b2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529a69e
740b2dc
 
 
 
e85061a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740b2dc
 
 
 
 
 
 
 
 
 
 
529a69e
 
740b2dc
 
 
 
 
 
 
529a69e
740b2dc
 
529a69e
740b2dc
b76d6c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85061a
b76d6c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85061a
 
 
 
 
b76d6c6
 
 
 
 
 
 
e85061a
 
 
 
 
b76d6c6
 
 
 
 
 
 
 
 
 
 
 
 
 
e85061a
740b2dc
 
 
60d3ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import streamlit as st
import pandas as pd
import torch
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
import nltk

nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')

# Initialize lemmatizer
lemmatizer = WordNetLemmatizer()

st.set_page_config(page_title="πŸ“° News Classifier & Q&A App", layout="wide")

# ----------------- Model Loader -----------------
@st.cache_resource
def load_text_classifier():
    model_name = "MihanTilk/News_Classifier"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(
        model_name
    )
    return pipeline("text-classification", model=model, tokenizer=tokenizer)

# Load Classifier & QA pipeline
classifier = load_text_classifier()
qa_pipeline = pipeline(
    "question-answering",
    model="deepset/roberta-large-squad2",
    tokenizer="deepset/roberta-large-squad2"
)

# ----------------- CSS Styling -----------------
st.markdown(
    """
    <style>
        /* Main background and text colors */
        .main { 
            background-color: #f4f4f4;
        }

        /* Text input boxes - light blue theme */
        .stTextInput>div>div>input, 
        .stTextArea>div>div>textarea {
            background-color: #e6f2ff;
            border: 1px solid #b3d1ff;
            border-radius: 8px;
            color: #003366;
        }

        /* File uploader - matching style */
        .stFileUploader>div>div {
            background-color: #e6f2ff;
            border: 1px solid #b3d1ff;
            border-radius: 8px;
        }

        /* Buttons - keeping your original style */
        .stButton>button {
            background-color: #ff4b4b;
            color: white;
            border-radius: 10px;
            border: none;
        }

        .stDownloadButton>button {
            background-color: #4CAF50;
            color: white;
            border-radius: 10px;
            border: none;
        }

        /* Text colors */
        h1, h2, h3, h4, h5, h6 {
            color: #003366;  /* Dark blue for headers */
        }

        p {
            color: #336699;  /* Medium blue for paragraphs */
        }

        /* Dataframe styling */
        .dataframe {
            background-color: #e6f2ff;
            border: 1px solid #b3d1ff;
        }
    </style>
    """,
    unsafe_allow_html=True
)

# ----------------- App Title -----------------
st.title("πŸ“° News Classification & Q&A App")
st.markdown("<h4 style='color:#ff4b4b;'>Upload a CSV to classify news headlines and ask questions!</h4>", unsafe_allow_html=True)

# ----------------- Upload CSV -----------------
st.subheader("πŸ“‚ Upload a CSV File")
uploaded_file = st.file_uploader("Choose a CSV file...", type=["csv"])

if uploaded_file:
    # Read and preprocess
    df = pd.read_csv(uploaded_file, encoding='utf-8')
    if "content" not in df.columns:
        st.error("❌ The uploaded CSV must contain a 'content' column.")
        st.stop()


    # Define preprocessing function
    def preprocess_text(text):
        # Lowercasing
        text = text.lower()
        # Remove punctuation and special characters
        text = re.sub(r'[^\w\s]', '', text)
        # Tokenize
        tokens = word_tokenize(text)
        # Remove stopwords
        tokens = [word for word in tokens if word not in stopwords.words('english')]
        # Lemmatize tokens
        tokens = [lemmatizer.lemmatize(word) for word in tokens]
        # Join tokens back to string
        return " ".join(tokens)

    # Apply preprocessing
    df['cleaned_text'] = df['content'].astype(str).apply(preprocess_text)
    st.write("πŸ“Š Preview of Uploaded Data:", df.head())

    # ----------------- Classification -----------------
    with st.spinner("πŸ” Classifying news articles..."):
        df['class'] = df['cleaned_text'].apply(lambda text: classifier(text)[0]['label'])

    st.success("βœ… Classification Complete!")
    st.write("πŸ”Ž Classified Results:", df[['content', 'class']].head())

    # ----------------- Download -----------------
    st.subheader("πŸ“₯ Download Results")
    output_df = df[['content', 'class']]
    csv_output = output_df.to_csv(index=False, encoding='utf-8-sig').encode('utf-8-sig')
    st.download_button("Download Output CSV", data=csv_output, file_name="output.csv", mime="text/csv")

    # ----------------- Q&A Section -----------------
    st.subheader("πŸ’¬ Ask a Question")
    question = st.text_input("πŸ” What do you want to know about the content?")

    if st.button("Get Answer"):
        context = " ".join(df['content'].tolist())
        with st.spinner("Answering..."):
            result = qa_pipeline(question=question, context=context)
        st.success(f"πŸ“ Answer: {result['answer']}")

# ----------------- Visualization Section -----------------

    st.subheader("πŸ“Š Data Visualizations")

    # Create two main columns (60/40 split)
    main_col1, main_col2 = st.columns([3, 2])

    with main_col1:
        # ----------------- Topic Distribution -----------------
        st.markdown("*Topic Distribution*")

        # Create sub-columns for the charts
        chart_col1, chart_col2 = st.columns(2)

        with chart_col1:
            # Compact Pie Chart
            fig1, ax1 = plt.subplots(figsize=(4, 4))
            df['class'].value_counts().plot.pie(
                autopct='%1.1f%%',
                startangle=90,
                ax=ax1,
                colors=['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0'],
                wedgeprops={'linewidth': 0.5, 'edgecolor': 'white'}
            )
            ax1.set_ylabel('')
            st.pyplot(fig1, use_container_width=True)

        with chart_col2:
            # Compact Bar Chart
            fig2, ax2 = plt.subplots(figsize=(4, 4))
            df['class'].value_counts().plot.bar(
                color=['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0'],
                ax=ax2,
                width=0.7
            )
            ax2.set_xlabel('')
            ax2.set_ylabel('Count')
            plt.xticks(rotation=45, ha='right')
            st.pyplot(fig2, use_container_width=True)

    with main_col2:
        # ----------------- Compact Word Cloud -----------------
        st.markdown("*Word Cloud*")
        text = " ".join(df['cleaned_text'].tolist())
        wordcloud = WordCloud(
            width=300,
            height=200,
            background_color="white",
            collocations=False,
            max_words=100
        ).generate(text)

        fig3, ax3 = plt.subplots(figsize=(4, 3))
        ax3.imshow(wordcloud, interpolation="bilinear")
        ax3.axis("off")
        st.pyplot(fig3, use_container_width=True)

# ----------------- Detailed Stats (below) -----------------
    with st.expander("πŸ“ˆ Detailed Statistics", expanded=False):
        stats_col1, stats_col2 = st.columns(2)

        with stats_col1:
            st.write("*Category Breakdown:*")
            stats_df = df['class'].value_counts().reset_index()
            stats_df.columns = ['Category', 'Count']
            stats_df['Percentage'] = (stats_df['Count'] / stats_df['Count'].sum() * 100).round(1)
            st.dataframe(stats_df, height=200)

        with stats_col2:
            if 'date' in df.columns:
                try:
                    st.write("*Monthly Trends*")
                    df['date'] = pd.to_datetime(df['date'])
                    trends = df.groupby([df['date'].dt.to_period('M'), 'class']).size().unstack()
                    st.line_chart(trends)
                except:
                    st.warning("Date parsing failed")

# ----------------- News Category Explorer -----------------
    st.subheader("πŸ” Explore News by Category")

    with st.spinner("πŸ” Classifying news articles..."):
        classified = df['cleaned_text'].apply(lambda text: classifier(text)[0])
        df['class'] = classified.apply(lambda x: x['label'])
        df['confidence'] = classified.apply(lambda x: x['score'])

    # Get unique categories
    categories = df['class'].unique()

    # Create 5 columns for category buttons
    cols = st.columns(5)

    # Create a dictionary to store category articles
    @st.cache_data
    def get_category_articles(df):
        return {category: df[df['class'] == category] for category in df['class'].unique()}

    category_articles = get_category_articles(df)

    # Place each category button in its own column
    for i, category in enumerate(categories):
        with cols[i]:
            if st.button(category, key=f"btn_{category}"):
                # Create pop-up window
                with st.popover(f"πŸ“° Articles in {category}", use_container_width=True):
                    st.markdown(f"### {category} Articles")
                    articles = category_articles[category]

                    # Display articles with expandable content
                    for idx, row in articles.iterrows():
                        with st.expander(f"Article {idx + 1}: {row['content'][:50]}...", expanded=False):
                            st.write(row['content'])
                            st.caption(f"Classification confidence: {row['confidence']:.2f}")

# ----------------- Footer -----------------
st.markdown("---")
st.markdown("<p style='text-align:center; color:#666;'>πŸš€ Built with using Streamlit & Hugging Face</p>", unsafe_allow_html=True)