Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,11 @@ def load_text_classifier():
|
|
19 |
|
20 |
# Load Classifier & QA pipeline
|
21 |
classifier = load_text_classifier()
|
22 |
-
qa_pipeline = pipeline(
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# ----------------- CSS Styling -----------------
|
25 |
st.markdown(
|
@@ -45,7 +49,7 @@ uploaded_file = st.file_uploader("Choose a CSV file...", type=["csv"])
|
|
45 |
|
46 |
if uploaded_file:
|
47 |
# Read and preprocess
|
48 |
-
df = pd.read_csv(uploaded_file)
|
49 |
if "content" not in df.columns:
|
50 |
st.error("β The uploaded CSV must contain a 'content' column.")
|
51 |
st.stop()
|
@@ -63,7 +67,8 @@ if uploaded_file:
|
|
63 |
|
64 |
# ----------------- Download -----------------
|
65 |
st.subheader("π₯ Download Results")
|
66 |
-
|
|
|
67 |
st.download_button("Download Output CSV", data=csv_output, file_name="output.csv", mime="text/csv")
|
68 |
|
69 |
# ----------------- Q&A Section -----------------
|
@@ -71,14 +76,14 @@ if uploaded_file:
|
|
71 |
question = st.text_input("π What do you want to know about the content?")
|
72 |
|
73 |
if st.button("Get Answer"):
|
74 |
-
context = " ".join(df['
|
75 |
with st.spinner("Answering..."):
|
76 |
result = qa_pipeline(question=question, context=context)
|
77 |
-
st.success(f"π
|
78 |
|
79 |
# ----------------- Word Cloud -----------------
|
80 |
-
st.subheader("
|
81 |
-
text = " ".join(df['
|
82 |
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(text)
|
83 |
|
84 |
fig, ax = plt.subplots()
|
|
|
19 |
|
20 |
# Load Classifier & QA pipeline
|
21 |
classifier = load_text_classifier()
|
22 |
+
qa_pipeline = pipeline(
|
23 |
+
"question-answering",
|
24 |
+
model="deepset/roberta-large-squad2",
|
25 |
+
tokenizer="deepset/roberta-large-squad2"
|
26 |
+
)
|
27 |
|
28 |
# ----------------- CSS Styling -----------------
|
29 |
st.markdown(
|
|
|
49 |
|
50 |
if uploaded_file:
|
51 |
# Read and preprocess
|
52 |
+
df = pd.read_csv(uploaded_file, encoding='utf-8')
|
53 |
if "content" not in df.columns:
|
54 |
st.error("β The uploaded CSV must contain a 'content' column.")
|
55 |
st.stop()
|
|
|
67 |
|
68 |
# ----------------- Download -----------------
|
69 |
st.subheader("π₯ Download Results")
|
70 |
+
output_df = df[['content', 'class']]
|
71 |
+
csv_output = output_df.to_csv(index=False, encoding='utf-8-sig').encode('utf-8-sig')
|
72 |
st.download_button("Download Output CSV", data=csv_output, file_name="output.csv", mime="text/csv")
|
73 |
|
74 |
# ----------------- Q&A Section -----------------
|
|
|
76 |
question = st.text_input("π What do you want to know about the content?")
|
77 |
|
78 |
if st.button("Get Answer"):
|
79 |
+
context = " ".join(df['content'].tolist())
|
80 |
with st.spinner("Answering..."):
|
81 |
result = qa_pipeline(question=question, context=context)
|
82 |
+
st.success(f"π Answer: {result['answer']}")
|
83 |
|
84 |
# ----------------- Word Cloud -----------------
|
85 |
+
st.subheader("β Word Cloud of News Text")
|
86 |
+
text = " ".join(df['content'].tolist())
|
87 |
wordcloud = WordCloud(width=800, height=400, background_color="white").generate(text)
|
88 |
|
89 |
fig, ax = plt.subplots()
|