Spaces:
Sleeping
Sleeping
File size: 8,467 Bytes
740b2dc 529a69e 740b2dc b76d6c6 740b2dc 529a69e 740b2dc 529a69e 740b2dc 529a69e 740b2dc 529a69e 740b2dc b76d6c6 740b2dc 60d3ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
# β
MUST be first Streamlit command
st.set_page_config(page_title="π° News Classifier & Q&A App", layout="wide")
# ----------------- Model Loader -----------------
@st.cache_resource
def load_text_classifier():
model_name = "MihanTilk/News_Classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name
)
return pipeline("text-classification", model=model, tokenizer=tokenizer)
# Load Classifier & QA pipeline
classifier = load_text_classifier()
qa_pipeline = pipeline(
"question-answering",
model="deepset/roberta-large-squad2",
tokenizer="deepset/roberta-large-squad2"
)
# ----------------- CSS Styling -----------------
st.markdown(
"""
<style>
/* Main background and text colors */
.main {
background-color: #f4f4f4;
}
/* Text input boxes - light blue theme */
.stTextInput>div>div>input,
.stTextArea>div>div>textarea {
background-color: #e6f2ff;
border: 1px solid #b3d1ff;
border-radius: 8px;
color: #003366;
}
/* File uploader - matching style */
.stFileUploader>div>div {
background-color: #e6f2ff;
border: 1px solid #b3d1ff;
border-radius: 8px;
}
/* Buttons - keeping your original style */
.stButton>button {
background-color: #ff4b4b;
color: white;
border-radius: 10px;
border: none;
}
.stDownloadButton>button {
background-color: #4CAF50;
color: white;
border-radius: 10px;
border: none;
}
/* Text colors */
h1, h2, h3, h4, h5, h6 {
color: #003366; /* Dark blue for headers */
}
p {
color: #336699; /* Medium blue for paragraphs */
}
/* Dataframe styling */
.dataframe {
background-color: #e6f2ff;
border: 1px solid #b3d1ff;
}
</style>
""",
unsafe_allow_html=True
)
# ----------------- App Title -----------------
st.title("π° News Classification & Q&A App")
st.markdown("<h4 style='color:#ff4b4b;'>Upload a CSV to classify news headlines and ask questions!</h4>", unsafe_allow_html=True)
# ----------------- Upload CSV -----------------
st.subheader("π Upload a CSV File")
uploaded_file = st.file_uploader("Choose a CSV file...", type=["csv"])
if uploaded_file:
# Read and preprocess
df = pd.read_csv(uploaded_file, encoding='utf-8')
if "content" not in df.columns:
st.error("β The uploaded CSV must contain a 'content' column.")
st.stop()
# Preprocess text
df['cleaned_text'] = df['content'].astype(str).str.lower().str.strip()
st.write("π Preview of Uploaded Data:", df.head())
# ----------------- Classification -----------------
with st.spinner("π Classifying news articles..."):
df['class'] = df['cleaned_text'].apply(lambda text: classifier(text)[0]['label'])
st.success("β
Classification Complete!")
st.write("π Classified Results:", df[['content', 'class']].head())
# ----------------- Download -----------------
st.subheader("π₯ Download Results")
output_df = df[['content', 'class']]
csv_output = output_df.to_csv(index=False, encoding='utf-8-sig').encode('utf-8-sig')
st.download_button("Download Output CSV", data=csv_output, file_name="output.csv", mime="text/csv")
# ----------------- Q&A Section -----------------
st.subheader("π¬ Ask a Question")
question = st.text_input("π What do you want to know about the content?")
if st.button("Get Answer"):
context = " ".join(df['content'].tolist())
with st.spinner("Answering..."):
result = qa_pipeline(question=question, context=context)
st.success(f"π Answer: {result['answer']}")
# ----------------- Visualization Section -----------------
st.subheader("π Data Visualizations")
# Create two main columns (60/40 split)
main_col1, main_col2 = st.columns([3, 2])
with main_col1:
# ----------------- Topic Distribution -----------------
st.markdown("*Topic Distribution*")
# Create sub-columns for the charts
chart_col1, chart_col2 = st.columns(2)
with chart_col1:
# Compact Pie Chart
fig1, ax1 = plt.subplots(figsize=(4, 4))
df['class'].value_counts().plot.pie(
autopct='%1.1f%%',
startangle=90,
ax=ax1,
colors=['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0'],
wedgeprops={'linewidth': 0.5, 'edgecolor': 'white'}
)
ax1.set_ylabel('')
st.pyplot(fig1, use_container_width=True)
with chart_col2:
# Compact Bar Chart
fig2, ax2 = plt.subplots(figsize=(4, 4))
df['class'].value_counts().plot.bar(
color=['#ff9999', '#66b3ff', '#99ff99', '#ffcc99', '#c2c2f0'],
ax=ax2,
width=0.7
)
ax2.set_xlabel('')
ax2.set_ylabel('Count')
plt.xticks(rotation=45, ha='right')
st.pyplot(fig2, use_container_width=True)
with main_col2:
# ----------------- Compact Word Cloud -----------------
st.markdown("*Word Cloud*")
text = " ".join(df['content'].tolist())
wordcloud = WordCloud(
width=300,
height=200,
background_color="white",
collocations=False,
max_words=100
).generate(text)
fig3, ax3 = plt.subplots(figsize=(4, 3))
ax3.imshow(wordcloud, interpolation="bilinear")
ax3.axis("off")
st.pyplot(fig3, use_container_width=True)
# ----------------- Detailed Stats (below) -----------------
with st.expander("π Detailed Statistics", expanded=False):
stats_col1, stats_col2 = st.columns(2)
with stats_col1:
st.write("*Category Breakdown:*")
stats_df = df['class'].value_counts().reset_index()
stats_df.columns = ['Category', 'Count']
stats_df['Percentage'] = (stats_df['Count'] / stats_df['Count'].sum() * 100).round(1)
st.dataframe(stats_df, height=200)
with stats_col2:
if 'date' in df.columns:
try:
st.write("*Monthly Trends*")
df['date'] = pd.to_datetime(df['date'])
trends = df.groupby([df['date'].dt.to_period('M'), 'class']).size().unstack()
st.line_chart(trends)
except:
st.warning("Date parsing failed")
# ----------------- News Category Explorer -----------------
st.subheader("π Explore News by Category")
# Get unique categories
categories = df['class'].unique()
# Create 5 columns for category buttons
cols = st.columns(5)
# Create a dictionary to store category articles
category_articles = {category: df[df['class'] == category] for category in categories}
# Place each category button in its own column
for i, category in enumerate(categories):
with cols[i]:
if st.button(category, key=f"btn_{category}"):
# Create pop-up window
with st.popover(f"π° Articles in {category}", use_container_width=True):
st.markdown(f"### {category} Articles")
articles = category_articles[category]
# Display articles with expandable content
for idx, row in articles.iterrows():
with st.expander(f"Article {idx + 1}: {row['content'][:50]}...", expanded=False):
st.write(row['content'])
st.caption(f"Classification confidence: {classifier(row['content'])[0]['score']:.2f}")
# ----------------- Footer -----------------
st.markdown("---")
st.markdown("<p style='text-align:center; color:#666;'>π Built with using Streamlit & Hugging Face</p>", unsafe_allow_html=True) |