Tesneem commited on
Commit
b71ad14
·
verified ·
1 Parent(s): fe48904

Update Netflix_Recommendation_Notebook_Code

Browse files
Netflix_Recommendation_Notebook_Code CHANGED
@@ -8,35 +8,35 @@ import numpy as np
8
  import pandas as pd
9
  from tqdm import tqdm # For tracking progress in batches
10
 
11
- # Check if GPU is available
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  print(f"Using device: {device}")
14
 
15
- # Load dataset
16
  dataset = pd.read_csv('/kaggle/input/d/infamouscoder/dataset-netflix-shows/netflix_titles.csv')
17
 
18
- # Load model to GPU if available
19
  model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
20
 
21
- # Combine fields for embeddings
22
  def combine_description_title_and_genre(description, listed_in, title):
23
  return f"{description} Genre: {listed_in} Title: {title}"
24
 
25
- # Create combined text column
26
  dataset['combined_text'] = dataset.apply(lambda row: combine_description_title_and_genre(row['description'], row['listed_in'], row['title']), axis=1)
27
 
28
- # Generate embeddings in batches to save memory
29
  batch_size = 32
30
  embeddings = []
31
 
32
  for i in tqdm(range(0, len(dataset), batch_size), desc="Generating Embeddings"):
33
  batch_texts = dataset['combined_text'][i:i+batch_size].tolist()
34
  batch_embeddings = model.encode(batch_texts, convert_to_tensor=True, device=device)
35
- embeddings.extend(batch_embeddings.cpu().numpy()) # Move to CPU to save memory
36
 
37
- # Convert list to numpy array
38
  embeddings = np.array(embeddings)
39
 
40
- # Save embeddings and metadata
41
  np.save("/kaggle/working/netflix_embeddings.npy", embeddings)
42
  dataset[['show_id', 'title', 'description', 'listed_in']].to_csv("/kaggle/working/netflix_metadata.csv", index=False)
 
8
  import pandas as pd
9
  from tqdm import tqdm # For tracking progress in batches
10
 
11
+ # check if GPU is available
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  print(f"Using device: {device}")
14
 
15
+ # load dataset
16
  dataset = pd.read_csv('/kaggle/input/d/infamouscoder/dataset-netflix-shows/netflix_titles.csv')
17
 
18
+ # load model to GPU if available
19
  model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
20
 
21
+ # combine fields (title, genre, description) for embeddings
22
  def combine_description_title_and_genre(description, listed_in, title):
23
  return f"{description} Genre: {listed_in} Title: {title}"
24
 
25
+ # create combined text column
26
  dataset['combined_text'] = dataset.apply(lambda row: combine_description_title_and_genre(row['description'], row['listed_in'], row['title']), axis=1)
27
 
28
+ # generate embeddings in batches to save memory
29
  batch_size = 32
30
  embeddings = []
31
 
32
  for i in tqdm(range(0, len(dataset), batch_size), desc="Generating Embeddings"):
33
  batch_texts = dataset['combined_text'][i:i+batch_size].tolist()
34
  batch_embeddings = model.encode(batch_texts, convert_to_tensor=True, device=device)
35
+ embeddings.extend(batch_embeddings.cpu().numpy()) # move to CPU to save memory
36
 
37
+ # convert list to numpy array
38
  embeddings = np.array(embeddings)
39
 
40
+ # save embeddings and metadata
41
  np.save("/kaggle/working/netflix_embeddings.npy", embeddings)
42
  dataset[['show_id', 'title', 'description', 'listed_in']].to_csv("/kaggle/working/netflix_metadata.csv", index=False)