Update app.py
Browse files
app.py
CHANGED
@@ -13,49 +13,49 @@ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base
|
|
13 |
image_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
|
15 |
def generate_input(input_type, image=None, text=None, response_amount=3):
|
16 |
-
#
|
17 |
combined_input = ""
|
18 |
|
19 |
-
#
|
20 |
if input_type == "Image" and image:
|
21 |
-
inputs = processor(images=image, return_tensors="pt")
|
22 |
-
out = image_model.generate(**inputs)
|
23 |
-
image_caption = processor.decode(out[0], skip_special_tokens=True)
|
24 |
-
combined_input += image_caption #
|
25 |
|
26 |
-
#
|
27 |
elif input_type == "Text" and text:
|
28 |
-
combined_input += text #
|
29 |
|
30 |
-
#
|
31 |
elif input_type == "Both" and image and text:
|
32 |
inputs = processor(images=image, return_tensors="pt")
|
33 |
out = image_model.generate(**inputs)
|
34 |
-
image_caption = processor.decode(out[0], skip_special_tokens=True)
|
35 |
-
combined_input += image_caption + " and " + text #
|
36 |
|
37 |
-
#
|
38 |
if not combined_input:
|
39 |
combined_input = "No input provided."
|
40 |
if response_amount is None:
|
41 |
response_amount=3
|
42 |
|
43 |
-
return vector_search(combined_input,response_amount)
|
44 |
|
45 |
-
#
|
46 |
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
|
47 |
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
|
48 |
|
49 |
-
#
|
50 |
def vector_search(query,top_n=3):
|
51 |
-
query_embedding = sentence_model.encode(query)
|
52 |
-
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
53 |
if top_n is None:
|
54 |
top_n=3
|
55 |
-
top_indices = similarities.argsort()[-top_n:][::-1]
|
56 |
-
results = metadata.iloc[top_indices]
|
57 |
result_text=""
|
58 |
-
for index,row in results.iterrows():
|
59 |
if index!=top_n-1:
|
60 |
result_text+=f"Title: {row['title']} Description: {row['description']} Genre: {row['listed_in']}\n\n"
|
61 |
else:
|
@@ -63,12 +63,12 @@ def vector_search(query,top_n=3):
|
|
63 |
return result_text
|
64 |
|
65 |
|
66 |
-
def set_response_amount(response_amount):
|
67 |
if response_amount is None:
|
68 |
return 3
|
69 |
return response_amount
|
70 |
|
71 |
-
#
|
72 |
def update_inputs(input_type):
|
73 |
if input_type == "Image":
|
74 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
@@ -83,13 +83,13 @@ with gr.Blocks() as demo:
|
|
83 |
input_type = gr.Radio(["Image", "Text", "Both"], label="Select Input Type", type="value")
|
84 |
response_type=gr.Dropdown(choices=[3,5,10,25], type="value", label="Select Response Amount", visible=False)
|
85 |
image_input = gr.Image(label="Upload Image", type="pil", visible=False) # Hidden initially
|
86 |
-
text_input = gr.Textbox(label="Enter Text Query", placeholder="Enter a description or query here", visible=False) #
|
87 |
|
88 |
input_type.change(fn=update_inputs, inputs=input_type, outputs=[image_input, text_input, response_type])
|
89 |
-
#
|
90 |
selected_response_amount = gr.State()
|
91 |
|
92 |
-
#
|
93 |
response_type.change(fn=set_response_amount, inputs=response_type, outputs=selected_response_amount)
|
94 |
|
95 |
submit_button = gr.Button("Submit")
|
@@ -99,121 +99,3 @@ with gr.Blocks() as demo:
|
|
99 |
|
100 |
submit_button.click(fn=generate_input, inputs=[input_type,image_input, text_input,selected_response_amount], outputs=output)
|
101 |
demo.launch()
|
102 |
-
|
103 |
-
|
104 |
-
# with gr.Blocks() as demo:
|
105 |
-
# gr.Markdown("# Netflix Recommendation System")
|
106 |
-
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|
107 |
-
# query = gr.Textbox(label="Enter your query")
|
108 |
-
# output = gr.Textbox(label="Recommendations")
|
109 |
-
# submit_button = gr.Button("Submit")
|
110 |
-
|
111 |
-
# submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output)
|
112 |
-
# import gradio as gr
|
113 |
-
|
114 |
-
# # def greet(name):
|
115 |
-
# # return "Hello " + name + "!!"
|
116 |
-
# from sentence_transformers import SentenceTransformer
|
117 |
-
# import numpy as np
|
118 |
-
# from sklearn.metrics.pairwise import cosine_similarity
|
119 |
-
# from datasets import load_dataset
|
120 |
-
# # Load pre-trained SentenceTransformer model
|
121 |
-
# embedding_model = SentenceTransformer("thenlper/gte-large")
|
122 |
-
|
123 |
-
# # # Example dataset with genres (replace with your actual data)
|
124 |
-
# # dataset = load_dataset("hugginglearners/netflix-shows")
|
125 |
-
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
|
126 |
-
# # data = dataset['train'] # Accessing the 'train' split of the dataset
|
127 |
-
|
128 |
-
# # # Convert the dataset to a list of dictionaries for easier indexing
|
129 |
-
# # data_list = list[data]
|
130 |
-
# # print(data_list)
|
131 |
-
# # # Combine description and genre for embedding
|
132 |
-
# # def combine_description_title_and_genre(description, listed_in, title):
|
133 |
-
# # return f"{description} Genre: {listed_in} Title: {title}"
|
134 |
-
|
135 |
-
# # # Generate embedding for the query
|
136 |
-
# # def get_embedding(text):
|
137 |
-
# # return embedding_model.encode(text)
|
138 |
-
|
139 |
-
# # # Vector search function
|
140 |
-
# # def vector_search(query):
|
141 |
-
# # query_embedding = get_embedding(query)
|
142 |
-
|
143 |
-
# # # Generate embeddings for the combined description and genre
|
144 |
-
# # embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
|
145 |
-
|
146 |
-
# # # Calculate cosine similarity between the query and all embeddings
|
147 |
-
# # similarities = cosine_similarity([query_embedding], embeddings)
|
148 |
-
# # Load dataset (using the correct dataset identifier for your case)
|
149 |
-
# dataset = load_dataset("hugginglearners/netflix-shows")
|
150 |
-
|
151 |
-
# # Combine description and genre for embedding
|
152 |
-
# def combine_description_title_and_genre(description, listed_in, title):
|
153 |
-
# return f"{description} Genre: {listed_in} Title: {title}"
|
154 |
-
|
155 |
-
# # Generate embedding for the query
|
156 |
-
# def get_embedding(text):
|
157 |
-
# return embedding_model.encode(text)
|
158 |
-
|
159 |
-
# # Vector search function
|
160 |
-
# def vector_search(query):
|
161 |
-
# query_embedding = get_embedding(query)
|
162 |
-
|
163 |
-
# # Function to generate embeddings for each item in the dataset
|
164 |
-
# def generate_embeddings(example):
|
165 |
-
# return {
|
166 |
-
# 'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
|
167 |
-
# }
|
168 |
-
|
169 |
-
# # Generate embeddings for the dataset using map
|
170 |
-
# embeddings_dataset = dataset["train"].map(generate_embeddings)
|
171 |
-
|
172 |
-
# # Extract embeddings
|
173 |
-
# embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
|
174 |
-
|
175 |
-
# # Calculate cosine similarity between the query and all embeddings
|
176 |
-
# similarities = cosine_similarity([query_embedding], embeddings)
|
177 |
-
# # # Adjust similarity scores based on ratings
|
178 |
-
# # ratings = np.array([item["rating"] for item in data_list])
|
179 |
-
# # adjusted_similarities = similarities * ratings.reshape(-1, 1)
|
180 |
-
|
181 |
-
# # Get top N most similar items (e.g., top 3)
|
182 |
-
# top_n = 3
|
183 |
-
# top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
|
184 |
-
# top_items = [dataset["train"][i] for i in top_indices]
|
185 |
-
|
186 |
-
# # Format the output for display
|
187 |
-
# search_result = ""
|
188 |
-
# for item in top_items:
|
189 |
-
# search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"
|
190 |
-
|
191 |
-
# return search_result
|
192 |
-
|
193 |
-
# # Gradio Interface
|
194 |
-
# def movie_search(query):
|
195 |
-
# return vector_search(query)
|
196 |
-
# with gr.Blocks() as demo:
|
197 |
-
# gr.Markdown("# Netflix Recommendation System")
|
198 |
-
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|
199 |
-
# query = gr.Textbox(label="Enter your query")
|
200 |
-
# output = gr.Textbox(label="Recommendations")
|
201 |
-
# submit_button = gr.Button("Submit")
|
202 |
-
|
203 |
-
# submit_button.click(fn=movie_search, inputs=query, outputs=output)
|
204 |
-
|
205 |
-
# demo.launch()
|
206 |
-
|
207 |
-
|
208 |
-
# # iface = gr.Interface(fn=movie_search,
|
209 |
-
# # inputs=gr.inputs.Textbox(label="Enter your query"),
|
210 |
-
# # outputs="text",
|
211 |
-
# # live=True,
|
212 |
-
# # title="Netflix Recommendation System",
|
213 |
-
# # description="Enter a query to get Netflix recommendations based on description and genre.")
|
214 |
-
|
215 |
-
# # iface.launch()
|
216 |
-
|
217 |
-
|
218 |
-
# # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
219 |
-
# # demo.launch()
|
|
|
13 |
image_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
|
15 |
def generate_input(input_type, image=None, text=None, response_amount=3):
|
16 |
+
# initalize input variable
|
17 |
combined_input = ""
|
18 |
|
19 |
+
# handle image input if chosen
|
20 |
if input_type == "Image" and image:
|
21 |
+
inputs = processor(images=image, return_tensors="pt") #process image with BlipProcessor
|
22 |
+
out = image_model.generate(**inputs) #generate caption with BlipModel
|
23 |
+
image_caption = processor.decode(out[0], skip_special_tokens=True) #decode output w/ processor
|
24 |
+
combined_input += image_caption # add the image caption to input
|
25 |
|
26 |
+
# handle text input if chosen
|
27 |
elif input_type == "Text" and text:
|
28 |
+
combined_input += text # add the text to input
|
29 |
|
30 |
+
# handle both text and image input if chosen
|
31 |
elif input_type == "Both" and image and text:
|
32 |
inputs = processor(images=image, return_tensors="pt")
|
33 |
out = image_model.generate(**inputs)
|
34 |
+
image_caption = processor.decode(out[0], skip_special_tokens=True) #repeat image processing + caption generation and decoding
|
35 |
+
combined_input += image_caption + " and " + text # combine image caption and text
|
36 |
|
37 |
+
# if no input, fallback
|
38 |
if not combined_input:
|
39 |
combined_input = "No input provided."
|
40 |
if response_amount is None:
|
41 |
response_amount=3
|
42 |
|
43 |
+
return vector_search(combined_input,response_amount) #search through embedded document w/ input
|
44 |
|
45 |
+
# load embeddings and metadata
|
46 |
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
|
47 |
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
|
48 |
|
49 |
+
# vector search function
|
50 |
def vector_search(query,top_n=3):
|
51 |
+
query_embedding = sentence_model.encode(query) #encode input w/ Sentence Transformers
|
52 |
+
similarities = cosine_similarity([query_embedding], embeddings)[0] #similarity function
|
53 |
if top_n is None:
|
54 |
top_n=3
|
55 |
+
top_indices = similarities.argsort()[-top_n:][::-1] #return top n indices based on chosen output amount
|
56 |
+
results = metadata.iloc[top_indices] #get metadata
|
57 |
result_text=""
|
58 |
+
for index,row in results.iterrows(): #loop through results to get Title, Description, and Genre for top n outputs
|
59 |
if index!=top_n-1:
|
60 |
result_text+=f"Title: {row['title']} Description: {row['description']} Genre: {row['listed_in']}\n\n"
|
61 |
else:
|
|
|
63 |
return result_text
|
64 |
|
65 |
|
66 |
+
def set_response_amount(response_amount): #set response amount
|
67 |
if response_amount is None:
|
68 |
return 3
|
69 |
return response_amount
|
70 |
|
71 |
+
# based on the selected input type, make the appropriate input visible
|
72 |
def update_inputs(input_type):
|
73 |
if input_type == "Image":
|
74 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
|
|
83 |
input_type = gr.Radio(["Image", "Text", "Both"], label="Select Input Type", type="value")
|
84 |
response_type=gr.Dropdown(choices=[3,5,10,25], type="value", label="Select Response Amount", visible=False)
|
85 |
image_input = gr.Image(label="Upload Image", type="pil", visible=False) # Hidden initially
|
86 |
+
text_input = gr.Textbox(label="Enter Text Query", placeholder="Enter a description or query here", visible=False) # hidden initially
|
87 |
|
88 |
input_type.change(fn=update_inputs, inputs=input_type, outputs=[image_input, text_input, response_type])
|
89 |
+
# state variable to store the selected response amount
|
90 |
selected_response_amount = gr.State()
|
91 |
|
92 |
+
# capture response amount immediately when dropdown changes
|
93 |
response_type.change(fn=set_response_amount, inputs=response_type, outputs=selected_response_amount)
|
94 |
|
95 |
submit_button = gr.Button("Submit")
|
|
|
99 |
|
100 |
submit_button.click(fn=generate_input, inputs=[input_type,image_input, text_input,selected_response_amount], outputs=output)
|
101 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|