makeavid-sd-jax / makeavid_sd /torch_impl /torch_cross_attention.py
lopho's picture
forgot about the nested package structure
b2f876f
from typing import Optional
import torch
import torch.nn as nn
class CrossAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the context. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.scale = dim_head**-0.5
self.heads = heads
self.n_heads = heads
self.d_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias = bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias = bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias = bias)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
try:
# You can install flash attention by cloning their Github repo,
# [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)
# and then running `python setup.py install`
from flash_attn.flash_attention import FlashAttention
self.flash = FlashAttention()
# Set the scale for scaled dot-product attention.
self.flash.softmax_scale = self.scale
# Set to `None` if it's not installed
except ImportError:
self.flash = None
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def forward(self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
is_self = encoder_hidden_states is None
# attention, what we cannot get enough of
query = self.to_q(hidden_states)
has_cond = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
dim = query.shape[-1]
if self.flash is not None and not has_cond and self.d_head <= 64:
hidden_states = self.flash_attention(query, key, value)
else:
hidden_states = self.normal_attention(query, key, value, is_self)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
"""
#### Flash Attention
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
"""
# Get batch size and number of elements along sequence axis (`width * height`)
batch_size, seq_len, _ = q.shape
# Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of
# shape `[batch_size, seq_len, 3, n_heads * d_head]`
qkv = torch.stack((q, k, v), dim = 2)
# Split the heads
qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head)
# Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to
# fit this size.
if self.d_head <= 32:
pad = 32 - self.d_head
elif self.d_head <= 64:
pad = 64 - self.d_head
elif self.d_head <= 128:
pad = 128 - self.d_head
else:
raise ValueError(f'Head size ${self.d_head} too large for Flash Attention')
# Pad the heads
if pad:
qkv = torch.cat((qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim = -1)
# Compute attention
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
# This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]`
out, _ = self.flash(qkv)
# Truncate the extra head size
out = out[:, :, :, :self.d_head]
# Reshape to `[batch_size, seq_len, n_heads * d_head]`
out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head)
# Map to `[batch_size, height * width, d_model]` with a linear layer
return out
def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, is_self: bool):
"""
#### Normal Attention
:param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
:param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
"""
# Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]`
q = q.view(*q.shape[:2], self.n_heads, -1)
k = k.view(*k.shape[:2], self.n_heads, -1)
v = v.view(*v.shape[:2], self.n_heads, -1)
# Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$
attn = torch.einsum('bihd,bjhd->bhij', q, k) * self.scale
# Compute softmax
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$
half = attn.shape[0] // 2
attn[half:] = attn[half:].softmax(dim = -1)
attn[:half] = attn[:half].softmax(dim = -1)
# Compute attention output
# $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
out = torch.einsum('bhij,bjhd->bihd', attn, v)
# Reshape to `[batch_size, height * width, n_heads * d_head]`
out = out.reshape(*out.shape[:2], -1)
# Map to `[batch_size, height * width, d_model]` with a linear layer
return out