from typing import Optional import torch import torch.nn as nn class CrossAttention(nn.Module): r""" A cross attention layer. Parameters: query_dim (`int`): The number of channels in the query. cross_attention_dim (`int`, *optional*): The number of channels in the context. If not given, defaults to `query_dim`. heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. bias (`bool`, *optional*, defaults to False): Set to `True` for the query, key, and value linear layers to contain a bias parameter. """ def __init__(self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False ): super().__init__() inner_dim = dim_head * heads cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.scale = dim_head**-0.5 self.heads = heads self.n_heads = heads self.d_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias = bias) self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias = bias) self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias = bias) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(inner_dim, query_dim)) self.to_out.append(nn.Dropout(dropout)) try: # You can install flash attention by cloning their Github repo, # [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention) # and then running `python setup.py install` from flash_attn.flash_attention import FlashAttention self.flash = FlashAttention() # Set the scale for scaled dot-product attention. self.flash.softmax_scale = self.scale # Set to `None` if it's not installed except ImportError: self.flash = None def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: batch_size, sequence_length, _ = hidden_states.shape is_self = encoder_hidden_states is None # attention, what we cannot get enough of query = self.to_q(hidden_states) has_cond = encoder_hidden_states is not None encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) dim = query.shape[-1] if self.flash is not None and not has_cond and self.d_head <= 64: hidden_states = self.flash_attention(query, key, value) else: hidden_states = self.normal_attention(query, key, value, is_self) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor): """ #### Flash Attention :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` """ # Get batch size and number of elements along sequence axis (`width * height`) batch_size, seq_len, _ = q.shape # Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of # shape `[batch_size, seq_len, 3, n_heads * d_head]` qkv = torch.stack((q, k, v), dim = 2) # Split the heads qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head) # Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to # fit this size. if self.d_head <= 32: pad = 32 - self.d_head elif self.d_head <= 64: pad = 64 - self.d_head elif self.d_head <= 128: pad = 128 - self.d_head else: raise ValueError(f'Head size ${self.d_head} too large for Flash Attention') # Pad the heads if pad: qkv = torch.cat((qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim = -1) # Compute attention # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ # This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]` out, _ = self.flash(qkv) # Truncate the extra head size out = out[:, :, :, :self.d_head] # Reshape to `[batch_size, seq_len, n_heads * d_head]` out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head) # Map to `[batch_size, height * width, d_model]` with a linear layer return out def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, is_self: bool): """ #### Normal Attention :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]` """ # Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]` q = q.view(*q.shape[:2], self.n_heads, -1) k = k.view(*k.shape[:2], self.n_heads, -1) v = v.view(*v.shape[:2], self.n_heads, -1) # Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$ attn = torch.einsum('bihd,bjhd->bhij', q, k) * self.scale # Compute softmax # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$ half = attn.shape[0] // 2 attn[half:] = attn[half:].softmax(dim = -1) attn[:half] = attn[:half].softmax(dim = -1) # Compute attention output # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$ out = torch.einsum('bhij,bjhd->bihd', attn, v) # Reshape to `[batch_size, height * width, n_heads * d_head]` out = out.reshape(*out.shape[:2], -1) # Map to `[batch_size, height * width, d_model]` with a linear layer return out