Spaces:
Sleeping
Sleeping
| # app.py | |
| import gradio as gr | |
| import torch | |
| from threading import Thread | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| # Choose any chat model with a chat template; Zephyr works well: | |
| MODEL_NAME = "google/gemma-3-270m" | |
| # Load model + tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype="auto", | |
| device_map="auto", | |
| ) | |
| def build_chat(system_message: str, history: list[tuple[str, str]], user_message: str): | |
| """Convert Gradio history into a list of chat messages for apply_chat_template.""" | |
| messages = [] | |
| if system_message: | |
| messages.append({"role": "system", "content": system_message}) | |
| for u, a in history: | |
| if u: | |
| messages.append({"role": "user", "content": u}) | |
| if a: | |
| messages.append({"role": "assistant", "content": a}) | |
| messages.append({"role": "user", "content": user_message}) | |
| return messages | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # 1) Build chat messages and tokenize using the model's chat template | |
| messages = build_chat(system_message, history, message) | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to(model.device) | |
| # 2) Stream generation | |
| streamer = TextIteratorStreamer( | |
| tokenizer, | |
| skip_prompt=True, | |
| skip_special_tokens=True, | |
| ) | |
| gen_kwargs = dict( | |
| input_ids=inputs, | |
| max_new_tokens=int(max_tokens), | |
| do_sample=True, | |
| temperature=float(temperature), | |
| top_p=float(top_p), | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.eos_token_id, | |
| streamer=streamer, | |
| ) | |
| # Run generate() in a background thread while we yield chunks | |
| thread = Thread(target=model.generate, kwargs=gen_kwargs) | |
| thread.start() | |
| response = "" | |
| for new_text in streamer: | |
| response += new_text | |
| yield response | |
| thread.join() | |
| # Gradio UI (same controls as your example) | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |