TakiTakiTa commited on
Commit
b1f94e8
·
verified ·
1 Parent(s): 8c5c297

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -31
app.py CHANGED
@@ -1,11 +1,34 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,34 +38,48 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
 
 
40
  yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -50,15 +87,10 @@ demo = gr.ChatInterface(
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ # app.py
2
  import gradio as gr
3
+ import torch
4
+ from threading import Thread
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
 
7
+ # Choose any chat model with a chat template; Zephyr works well:
8
+ MODEL_NAME = "google/gemma-3-270m"
 
 
9
 
10
+ # Load model + tokenizer
11
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ MODEL_NAME,
14
+ torch_dtype="auto",
15
+ device_map="auto",
16
+ )
17
+
18
+ def build_chat(system_message: str, history: list[tuple[str, str]], user_message: str):
19
+ """Convert Gradio history into a list of chat messages for apply_chat_template."""
20
+ messages = []
21
+ if system_message:
22
+ messages.append({"role": "system", "content": system_message})
23
+
24
+ for u, a in history:
25
+ if u:
26
+ messages.append({"role": "user", "content": u})
27
+ if a:
28
+ messages.append({"role": "assistant", "content": a})
29
+
30
+ messages.append({"role": "user", "content": user_message})
31
+ return messages
32
 
33
  def respond(
34
  message,
 
38
  temperature,
39
  top_p,
40
  ):
41
+ # 1) Build chat messages and tokenize using the model's chat template
42
+ messages = build_chat(system_message, history, message)
43
+
44
+ inputs = tokenizer.apply_chat_template(
45
+ messages,
46
+ add_generation_prompt=True,
47
+ tokenize=True,
48
+ return_tensors="pt",
49
+ )
50
 
51
+ inputs = inputs.to(model.device)
 
 
 
 
52
 
53
+ # 2) Stream generation
54
+ streamer = TextIteratorStreamer(
55
+ tokenizer,
56
+ skip_prompt=True,
57
+ skip_special_tokens=True,
58
+ )
59
 
60
+ gen_kwargs = dict(
61
+ input_ids=inputs,
62
+ max_new_tokens=int(max_tokens),
63
+ do_sample=True,
64
+ temperature=float(temperature),
65
+ top_p=float(top_p),
66
+ eos_token_id=tokenizer.eos_token_id,
67
+ pad_token_id=tokenizer.eos_token_id,
68
+ streamer=streamer,
69
+ )
70
 
71
+ # Run generate() in a background thread while we yield chunks
72
+ thread = Thread(target=model.generate, kwargs=gen_kwargs)
73
+ thread.start()
 
 
 
 
 
74
 
75
+ response = ""
76
+ for new_text in streamer:
77
+ response += new_text
78
  yield response
79
 
80
+ thread.join()
81
 
82
+ # Gradio UI (same controls as your example)
 
 
83
  demo = gr.ChatInterface(
84
  respond,
85
  additional_inputs=[
 
87
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
88
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
89
  gr.Slider(
90
+ minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
 
 
 
 
91
  ),
92
  ],
93
  )
94
 
 
95
  if __name__ == "__main__":
96
  demo.launch()