Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,764 Bytes
f3ff4f1 91d87c3 c95a918 f3ff4f1 5bacbc7 654565f f3ff4f1 654565f f3ff4f1 1dd8354 f3ff4f1 654565f f3ff4f1 65a7eee f3ff4f1 0bc6644 654565f f3ff4f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 |
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision import transforms
from PIL import Image
import trimesh
import os
import random
import trellis.modules.sparse as sp
from trellis.models.sparse_structure_vae import *
from contextlib import contextmanager
import sys
sys.path.append("wheels/vggt")
from wheels.vggt.vggt.models.vggt import VGGT
from typing import *
from scipy.spatial.transform import Rotation
from transformers import AutoModelForImageSegmentation
import rembg
def export_point_cloud(xyz, color):
# Convert tensors to numpy arrays if needed
if isinstance(xyz, torch.Tensor):
xyz = xyz.detach().cpu().numpy()
if isinstance(color, torch.Tensor):
color = color.detach().cpu().numpy()
color = (color * 255).astype(np.uint8)
# Create point cloud using trimesh
point_cloud = trimesh.PointCloud(vertices=xyz, colors=color)
return point_cloud
def normalize_trimesh(mesh):
# Calculate the mesh centroid and bounding box extents
centroid = mesh.centroid
# Determine the scale based on the largest extent to fit into unit cube
# Normalizing: Center and scale the vertices
mesh.vertices -= centroid
extents = mesh.extents
scale = max(extents)
mesh.vertices /= scale
return mesh
def random_sample_rotation(rotation_factor: float = 1.0) -> np.ndarray:
# angle_z, angle_y, angle_x
euler = np.random.rand(3) * np.pi * 2 / rotation_factor # (0, 2 * pi / rotation_range)
rotation = Rotation.from_euler('zyx', euler).as_matrix()
return rotation
from scipy.ndimage import binary_dilation
def voxelize_trimesh(mesh, resolution=(64, 64, 64), stride=4):
"""
Voxelize a given trimesh object with the specified resolution, incorporating 4x anti-aliasing.
First voxelizes at a 4x resolution and then downsamples to the target resolution.
Args:
mesh (trimesh.Trimesh): The input trimesh object to be voxelized.
resolution (tuple): The voxel grid resolution as (x, y, z). Default is (64, 64, 64).
Returns:
np.ndarray: A boolean numpy array representing the voxel grid where True indicates
the presence of the mesh in that voxel and False otherwise.
"""
target_density = max(resolution)
target_edge_length = 1.0 / target_density
max_edge_for_subdivision = target_edge_length / 2
# Calculate the higher resolution for 4x anti-aliasing
anti_aliasing_density = target_density * stride
anti_aliasing_edge_length = 1.0 / anti_aliasing_density
anti_aliasing_max_edge_for_subdivision = anti_aliasing_edge_length / 2
# Get the vertices and faces of the mesh
vertices = mesh.vertices
faces = mesh.faces
# Subdivide the mesh for the higher resolution voxelization
try:
new_vertices, new_faces = trimesh.remesh.subdivide_to_size(
vertices, faces, anti_aliasing_max_edge_for_subdivision
)
subdivided_mesh = trimesh.Trimesh(vertices=new_vertices, faces=new_faces)
except Exception as e:
print(f"Unexpected error during mesh subdivision for anti-aliasing: {e}")
raise
# Voxelize the subdivided mesh at the higher resolution
try:
high_res_voxel_grid = subdivided_mesh.voxelized(
pitch=anti_aliasing_edge_length, method="binvox", exact=True
)
except:
print("Voxelization using 'binvox' method failed for anti-aliasing")
high_res_voxel_grid = subdivided_mesh.voxelized(pitch=anti_aliasing_edge_length)
print("Falling back to default voxelization method for anti-aliasing.")
high_res_boolean_array = high_res_voxel_grid.matrix.astype(bool)
x_stride, y_stride, z_stride = [int(anti_aliasing_density / target_density)] * 3
downsampled_shape = (
high_res_boolean_array.shape[0] // x_stride,
high_res_boolean_array.shape[1] // y_stride,
high_res_boolean_array.shape[2] // z_stride
)
downsampled_array = np.zeros(downsampled_shape, dtype=bool)
# Use NumPy's strided tricks to efficiently access sub-cubes for downsampling
shape = (downsampled_shape[0], downsampled_shape[1], downsampled_shape[2], x_stride, y_stride, z_stride)
strides = (x_stride * high_res_boolean_array.strides[0],
y_stride * high_res_boolean_array.strides[1],
z_stride * high_res_boolean_array.strides[2],
high_res_boolean_array.strides[0],
high_res_boolean_array.strides[1],
high_res_boolean_array.strides[2])
sub_cubes = np.lib.stride_tricks.as_strided(high_res_boolean_array, shape=shape, strides=strides)
downsampled_array = np.any(sub_cubes, axis=(3, 4, 5))
return downsampled_array
def get_occupied_coordinates(voxel_grid):
# Find the indices of occupied voxels
occupied_indices = np.argwhere(voxel_grid)
coords = torch.tensor(occupied_indices, dtype=torch.int8) # Use float for scaling operations
# Add a leading dimension for batch size or any additional data associations
coords = torch.cat([torch.zeros(coords.shape[0], 1, dtype=torch.int32), coords + 1], dim=1)
# Move to GPU if required
coords = coords.to('cuda:0')
return coords
from .base import Pipeline
from . import samplers
from ..modules import sparse as sp
class TrellisImageTo3DPipeline(Pipeline):
"""
Pipeline for inferring Trellis image-to-3D models.
Args:
models (dict[str, nn.Module]): The models to use in the pipeline.
sparse_structure_sampler (samplers.Sampler): The sampler for the sparse structure.
slat_sampler (samplers.Sampler): The sampler for the structured latent.
slat_normalization (dict): The normalization parameters for the structured latent.
image_cond_model (str): The name of the image conditioning model.
"""
default_image_resolution = 518
def __init__(
self,
models: dict[str, nn.Module] = None,
sparse_structure_sampler: samplers.Sampler = None,
slat_sampler: samplers.Sampler = None,
slat_normalization: dict = None,
image_cond_model: str = None,
):
if models is None:
return
super().__init__(models)
self.sparse_structure_sampler = sparse_structure_sampler
self.slat_sampler = slat_sampler
self.sparse_structure_sampler_params = {}
self.slat_sampler_params = {}
self.slat_normalization = slat_normalization
self._init_image_cond_model(image_cond_model)
@staticmethod
def from_pretrained(path: str) -> "TrellisImageTo3DPipeline":
"""
Load a pretrained model.
Args:
path (str): The path to the model. Can be either local path or a Hugging Face repository.
"""
pipeline = super(TrellisImageTo3DPipeline, TrellisImageTo3DPipeline).from_pretrained(path)
new_pipeline = TrellisImageTo3DPipeline()
new_pipeline.__dict__ = pipeline.__dict__
args = pipeline._pretrained_args
new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
new_pipeline.slat_sampler_params = args['slat_sampler']['params']
new_pipeline.slat_normalization = args['slat_normalization']
new_pipeline._init_image_cond_model(args['image_cond_model'])
return new_pipeline
def _init_image_cond_model(self, name: str):
"""
Initialize the image conditioning model.
"""
try:
dinov2_model = torch.hub.load(os.path.join(torch.hub.get_dir(), 'facebookresearch_dinov2_main'), name, source='local',pretrained=True)
except:
dinov2_model = torch.hub.load('facebookresearch/dinov2', name, pretrained=True)
dinov2_model.eval()
self.models['image_cond_model'] = dinov2_model
transform = transforms.Compose([
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
self.image_cond_model_transform = transform
def preprocess_image(self, input: Image.Image, resolution=518, no_background=True, recenter=True) -> Image.Image:
"""
Preprocess the input image using BiRefNet for background removal.
Includes padding to maintain aspect ratio when resizing to 518x518.
"""
# if has alpha channel, use it directly
has_alpha = False
if input.mode == 'RGBA':
alpha = np.array(input)[:, :, -1]
if not np.all(alpha == 255):
has_alpha = True
if has_alpha:
output = input
else:
input = input.convert('RGB')
max_size = max(input.size)
scale = min(1, 1024 / max_size)
if scale < 1:
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
# Get mask using BiRefNet
mask = self._get_birefnet_mask(input)
# Convert input to RGBA and apply mask
input_rgba = input.convert('RGBA')
input_array = np.array(input_rgba)
input_array[:, :, 3] = mask * 255 # Apply mask to alpha channel
output = Image.fromarray(input_array)
# Process the output image
output_np = np.array(output)
alpha = output_np[:, :, 3]
# Find bounding box of non-transparent pixels
bbox = np.argwhere(alpha > 0.8 * 255)
if len(bbox) == 0: # Handle case where no foreground is detected
return input.convert('RGB')
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
center = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
size = int(size * 1.1)
height, width = alpha.shape
if not recenter:
center = [width / 2, height / 2]
size = max(bbox[2] - bbox[0],
bbox[3] - bbox[1],
(bbox[2] - width / 2) * 2,
(width / 2 - bbox[0]) * 2,
(height / 2 - bbox[1]) * 2,
(bbox[3] - height / 2) * 2)
# Calculate and apply crop bbox
if not no_background:
if height > width:
center[0] = width / 2
if center[1] < width / 2:
center[1] = width / 2
elif center[1] > height - width / 2:
center[1] = height - width / 2
else:
center[1] = height / 2
if center[0] < height / 2:
center[0] = height / 2
elif center[0] > width - height / 2:
center[0] = width - height / 2
size = min(center[0], center[1], input.width - center[0], input.height - center[1], size) * 2
bbox = (
int(center[0] - size // 2),
int(center[1] - size // 2),
int(center[0] + size // 2),
int(center[1] + size // 2)
)
# Ensure bbox is within image bounds
bbox = (
max(0, bbox[0]),
max(0, bbox[1]),
min(output.width, bbox[2]),
min(output.height, bbox[3])
)
output = output.crop(bbox)
# Add padding to maintain aspect ratio
width, height = output.size
if width > height:
new_height = width
padding = (width - height) // 2
padded_output = Image.new('RGBA', (width, new_height), (0, 0, 0, 0))
padded_output.paste(output, (0, padding))
else:
new_width = height
padding = (height - width) // 2
padded_output = Image.new('RGBA', (new_width, height), (0, 0, 0, 0))
padded_output.paste(output, (padding, 0))
# Resize padded image to target size
# padded_output = padded_output.resize((resolution, resolution), Image.Resampling.LANCZOS)
padded_output = torch.from_numpy(np.array(padded_output).astype(np.float32)) / 255
padded_output = F.interpolate(padded_output.unsqueeze(0).permute(0, 3, 1, 2), (resolution, resolution), mode='bilinear', align_corners=False)[0].permute(1, 2, 0)
# Final processing
output = padded_output.cpu().numpy()
if no_background:
output = np.dstack((
output[:, :, :3] * (output[:, :, 3:4] > 0.8), # RGB channels premultiplied by alpha
output[:, :, 3] # Original alpha channel
))
output = Image.fromarray((output * 255).astype(np.uint8), mode='RGBA')
return output
def _get_birefnet_mask(self, image: Image.Image) -> np.ndarray:
"""Get object mask using BiRefNet"""
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
input_images = transform_image(image).unsqueeze(0).to(self.device)
with torch.no_grad():
preds = self.birefnet_model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
mask_np = np.array(mask)
return (mask_np > 128).astype(np.uint8)
@torch.no_grad()
def encode_image(self, image: Union[torch.Tensor, list[Image.Image]], w_layernorm=True) -> torch.Tensor:
"""
Encode the image.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image to encode
Returns:
torch.Tensor: The encoded features.
"""
if isinstance(image, torch.Tensor):
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
image = F.interpolate(image, self.default_image_resolution, mode='bilinear', align_corners=False)
elif isinstance(image, list):
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
image = [i.resize((self.default_image_resolution, self.default_image_resolution), Image.LANCZOS) for i in image]
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
image = torch.stack(image).to(self.device)
else:
raise ValueError(f"Unsupported type of image: {type(image)}")
image = self.image_cond_model_transform(image).to(self.device)
features = self.models['image_cond_model'](image, is_training=True)['x_prenorm']
if w_layernorm:
features = F.layer_norm(features, features.shape[-1:])
return features
def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
"""
Get the conditioning information for the model.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image prompts.
Returns:
dict: The conditioning information
"""
cond = self.encode_image(image)
neg_cond = torch.zeros_like(cond)
return {
'cond': cond,
'neg_cond': neg_cond,
}
def sample_sparse_structure(
self,
cond: dict,
num_samples: int = 1,
sampler_params: dict = {},
noise: torch.Tensor = None,
) -> torch.Tensor:
"""
Sample sparse structures with the given conditioning.
Args:
cond (dict): The conditioning information.
num_samples (int): The number of samples to generate.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample occupancy latent
flow_model = self.models['sparse_structure_flow_model']
reso = flow_model.resolution
if noise is None:
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
z_s = self.sparse_structure_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
).samples
# Decode occupancy latent
decoder = self.models['sparse_structure_decoder']
coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
return coords
def encode_slat(
self,
slat: sp.SparseTensor,
):
ret = {}
slat = self.models['slat_encoder'](slat, sample_posterior=False)
ret['slat'] = slat
return ret
@torch.no_grad()
def decode_slat(
self,
slat: sp.SparseTensor,
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
) -> dict:
"""
Decode the structured latent.
Args:
slat (sp.SparseTensor): The structured latent.
formats (List[str]): The formats to decode the structured latent to.
Returns:
dict: The decoded structured latent.
"""
ret = {}
ret['slat'] = slat
if 'gaussian' in formats:
ret['gaussian'] = self.models['slat_decoder_gs'](slat)
if 'mesh' in formats:
ret['mesh'] = self.models['slat_decoder_mesh'](slat)
if 'radiance_field' in formats:
ret['radiance_field'] = self.models['slat_decoder_rf'](slat)
return ret
def sample_slat(
self,
cond: dict,
coords: torch.Tensor,
sampler_params: dict = {},
) -> sp.SparseTensor:
"""
Sample structured latent with the given conditioning.
Args:
cond (dict): The conditioning information.
coords (torch.Tensor): The coordinates of the sparse structure.
sampler_params (dict): Additional parameters for the sampler.
"""
# Sample structured latent
flow_model = self.models['slat_flow_model']
noise = sp.SparseTensor(
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
coords=coords,
)
sampler_params = {**self.slat_sampler_params, **sampler_params}
slat = self.slat_sampler.sample(
flow_model,
noise,
**cond,
**sampler_params,
verbose=True
).samples
std = torch.tensor(self.slat_normalization['std'])[None].to(slat.device)
mean = torch.tensor(self.slat_normalization['mean'])[None].to(slat.device)
slat = slat * std + mean
return slat
def get_input(self, batch_data):
std = torch.tensor(self.slat_normalization['std'])[None].to(self.device)
mean = torch.tensor(self.slat_normalization['mean'])[None].to(self.device)
images = batch_data['source_image']
cond = self.encode_image(images)
if random.random() > 0.5:
cond = torch.zeros_like(cond)
target_feats = batch_data['target_feats']
target_coords = batch_data['target_coords']
targets = sp.SparseTensor(target_feats, target_coords).to(self.device)
targets = (targets - mean) / std
noise = sp.SparseTensor(
feats=torch.randn_like(target_feats).to(self.device),
coords=target_coords.to(self.device),
)
return targets, cond, noise
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
return self.slat_flow_model(x, t, cond)
@contextmanager
def inject_sampler_multi_image(
self,
sampler_name: str,
num_images: int,
num_steps: int,
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
):
"""
Inject a sampler with multiple images as condition.
Args:
sampler_name (str): The name of the sampler to inject.
num_images (int): The number of images to condition on.
num_steps (int): The number of steps to run the sampler for.
"""
sampler = getattr(self, sampler_name)
setattr(sampler, f'_old_inference_model', sampler._inference_model)
if mode == 'stochastic':
if num_images > num_steps:
print(f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
"This may lead to performance degradation.\033[0m")
cond_indices = (np.arange(num_steps) % num_images).tolist()
def _new_inference_model(self, model, x_t, t, cond, **kwargs):
cond_idx = cond_indices.pop(0)
cond_i = cond[cond_idx:cond_idx+1]
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
elif mode =='multidiffusion':
from .samplers import FlowEulerSampler
def _new_inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs):
if cfg_interval[0] <= t <= cfg_interval[1]:
preds = []
for i in range(len(cond)):
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
pred = sum(preds) / len(preds)
neg_pred = FlowEulerSampler._inference_model(self, model, x_t, t, neg_cond, **kwargs)
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
else:
preds = []
for i in range(len(cond)):
preds.append(FlowEulerSampler._inference_model(self, model, x_t, t, cond[i:i+1], **kwargs))
pred = sum(preds) / len(preds)
return pred
else:
raise ValueError(f"Unsupported mode: {mode}")
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
yield
sampler._inference_model = sampler._old_inference_model
delattr(sampler, f'_old_inference_model')
@torch.no_grad()
def run_multi_image(
self,
images: List[Image.Image],
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh', 'gaussian', 'radiance_field'],
preprocess_image: bool = True,
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
):
"""
Run the pipeline with multiple images as condition
Args:
images (List[Image.Image]): The multi-view images of the assets
num_samples (int): The number of samples to generate.
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
preprocess_image (bool): Whether to preprocess the image.
"""
if preprocess_image:
images = [self.preprocess_image(image) for image in images]
cond = self.get_cond(images)
cond['neg_cond'] = cond['neg_cond'][:1]
torch.manual_seed(seed)
flow_model = self.models['sparse_structure_flow_model']
reso = flow_model.resolution
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(self.device)
ss_steps = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}.get('steps')
with self.inject_sampler_multi_image('sparse_structure_sampler', len(images), ss_steps, mode=mode):
coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params, noise)
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
with self.inject_sampler_multi_image('slat_sampler', len(images), slat_steps, mode=mode):
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
@torch.no_grad()
def run(
self,
image: Image.Image,
ref_image: Image.Image = None,
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh'],
preprocess_image: bool = True,
init_mesh: trimesh.Trimesh = None,
coords: torch.Tensor = None,
normalize_init_mesh: bool = False,
init_resolution: int = 62,
init_stride: int = 4
) -> dict:
"""
Run the pipeline.
Args:
image (Image.Image): The image prompt.
num_samples (int): The number of samples to generate.
sparse_structure_sampler_params (dict): Additional parameters for the sparse structure sampler.
slat_sampler_params (dict): Additional parameters for the structured latent sampler.
preprocess_image (bool): Whether to preprocess the image.
"""
if preprocess_image:
image = self.preprocess_image(image)
if ref_image is not None:
cond = self.encode_image([image, ref_image])
neg_cond = torch.zeros_like(cond[0:1])
sparse_cond = slat_cond = {
'cond': 0.5 * cond[0:1] + 0.5 * cond[1:2],
'neg_cond': neg_cond,
}
else:
sparse_cond = slat_cond = self.get_cond([image])
torch.manual_seed(seed)
if coords is not None:
coords = coords
else:
coords = self.sample_sparse_structure(sparse_cond, num_samples, sparse_structure_sampler_params)
slat = self.sample_slat(slat_cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
def configure_optimizers(self):
params = list(self.slat_flow_model.parameters())
opt = torch.optim.AdamW(params, lr=1e-4, weight_decay=0.0)
return opt
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class TrellisVGGTTo3DPipeline(TrellisImageTo3DPipeline):
def get_ss_cond(self, image_cond: torch.Tensor, aggregated_tokens_list: List, num_samples: int) -> dict:
"""
Get the conditioning information for the model.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image prompts.
Returns:
dict: The conditioning information
"""
cond = self.sparse_structure_vggt_cond(aggregated_tokens_list, image_cond)
neg_cond = torch.zeros_like(cond)
return {
'cond': cond,
'neg_cond': neg_cond,
}
@torch.no_grad()
def vggt_feat(self, image: Union[torch.Tensor, list[Image.Image]]) -> List:
"""
Encode the image.
Args:
image (Union[torch.Tensor, list[Image.Image]]): The image to encode
Returns:
torch.Tensor: The encoded features.
"""
if isinstance(image, torch.Tensor):
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
image = F.interpolate(image, self.default_image_resolution, mode='bilinear', align_corners=False)
elif isinstance(image, list):
assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images"
image = [i.resize((self.default_image_resolution, self.default_image_resolution), Image.LANCZOS) for i in image]
image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image]
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
image = torch.stack(image).to(self.device)
else:
raise ValueError(f"Unsupported type of image: {type(image)}")
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=self.VGGT_dtype):
# Predict attributes including cameras, depth maps, and point maps.
aggregated_tokens_list, _ = self.VGGT_model.aggregator(image[None])
return aggregated_tokens_list, image
def run(
self,
image: Union[torch.Tensor, list[Image.Image]],
coords: torch.Tensor = None,
num_samples: int = 1,
seed: int = 42,
sparse_structure_sampler_params: dict = {},
slat_sampler_params: dict = {},
formats: List[str] = ['mesh'],
preprocess_image: bool = True,
mode: Literal['stochastic', 'multidiffusion'] = 'stochastic',
):
torch.manual_seed(seed)
aggregated_tokens_list, _ = self.vggt_feat(image)
b, n, _, _ = aggregated_tokens_list[0].shape
image_cond = self.encode_image(image).reshape(b, n, -1, 1024)
# if coords is None:
ss_flow_model = self.models['sparse_structure_flow_model']
ss_cond = self.get_ss_cond(image_cond[:, :, 5:], aggregated_tokens_list, num_samples)
# Sample structured latent
ss_sampler_params = {**self.sparse_structure_sampler_params, **sparse_structure_sampler_params}
reso = ss_flow_model.resolution
ss_noise = torch.randn(num_samples, ss_flow_model.in_channels, reso, reso, reso).to(self.device)
ss_slat = self.sparse_structure_sampler.sample(
ss_flow_model,
ss_noise,
**ss_cond,
**ss_sampler_params,
verbose=True
).samples
decoder = self.models['sparse_structure_decoder']
coords = torch.argwhere(decoder(ss_slat)>0)[:, [0, 2, 3, 4]].int()
cond = {
'cond': image_cond.reshape(n, -1, 1024),
'neg_cond': torch.zeros_like(image_cond.reshape(n, -1, 1024))[:1],
}
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get('steps')
with self.inject_sampler_multi_image('slat_sampler', len(image), slat_steps, mode=mode):
slat = self.sample_slat(cond, coords, slat_sampler_params)
return self.decode_slat(slat, formats)
@staticmethod
def from_pretrained(path: str) -> "TrellisVGGTTo3DPipeline":
"""
Load a pretrained model.
Args:
path (str): The path to the model. Can be either local path or a Hugging Face repository.
"""
pipeline = super(TrellisVGGTTo3DPipeline, TrellisVGGTTo3DPipeline).from_pretrained(path)
new_pipeline = TrellisVGGTTo3DPipeline()
new_pipeline.__dict__ = pipeline.__dict__
args = pipeline._pretrained_args
new_pipeline.VGGT_dtype = torch.float32
VGGT_model = VGGT.from_pretrained("Stable-X/vggt-object-v0-1")
new_pipeline.VGGT_model = VGGT_model.to(new_pipeline.device)
del new_pipeline.VGGT_model.depth_head
del new_pipeline.VGGT_model.track_head
del new_pipeline.VGGT_model.camera_head
del new_pipeline.VGGT_model.point_head
new_pipeline.VGGT_model.eval()
new_pipeline.birefnet_model = AutoModelForImageSegmentation.from_pretrained(
'ZhengPeng7/BiRefNet',
trust_remote_code=True
).to(new_pipeline.device)
new_pipeline.birefnet_model.eval()
new_pipeline.sparse_structure_sampler = getattr(samplers, args['sparse_structure_sampler']['name'])(**args['sparse_structure_sampler']['args'])
new_pipeline.sparse_structure_sampler_params = args['sparse_structure_sampler']['params']
new_pipeline.slat_sampler = getattr(samplers, args['slat_sampler']['name'])(**args['slat_sampler']['args'])
new_pipeline.slat_sampler_params = args['slat_sampler']['params']
new_pipeline.slat_normalization = args['slat_normalization']
new_pipeline._init_image_cond_model(args['image_cond_model'])
return new_pipeline |