Spaces:
Running
on
Zero
Running
on
Zero
Update trellis/pipelines/trellis_image_to_3d.py
Browse files
trellis/pipelines/trellis_image_to_3d.py
CHANGED
@@ -18,6 +18,7 @@ sys.path.append("wheels/vggt")
|
|
18 |
from wheels.vggt.vggt.models.vggt import VGGT
|
19 |
from typing import *
|
20 |
from scipy.spatial.transform import Rotation
|
|
|
21 |
|
22 |
def export_point_cloud(xyz, color):
|
23 |
# Convert tensors to numpy arrays if needed
|
@@ -328,15 +329,6 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
328 |
|
329 |
return output
|
330 |
|
331 |
-
def _lazy_load_birefnet(self):
|
332 |
-
"""Lazy loading of the BiRefNet model"""
|
333 |
-
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation, AutoModelForImageSegmentation
|
334 |
-
self.birefnet_model = AutoModelForImageSegmentation.from_pretrained(
|
335 |
-
'ZhengPeng7/BiRefNet',
|
336 |
-
trust_remote_code=True
|
337 |
-
).to(self.device)
|
338 |
-
self.birefnet_model.eval()
|
339 |
-
|
340 |
def _get_birefnet_mask(self, image: Image.Image) -> np.ndarray:
|
341 |
"""Get object mask using BiRefNet"""
|
342 |
image_size = (1024, 1024)
|
@@ -823,7 +815,6 @@ class TrellisVGGTTo3DPipeline(TrellisImageTo3DPipeline):
|
|
823 |
del new_pipeline.VGGT_model.point_head
|
824 |
new_pipeline.VGGT_model.eval()
|
825 |
|
826 |
-
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation, AutoModelForImageSegmentation
|
827 |
new_pipeline.birefnet_model = AutoModelForImageSegmentation.from_pretrained(
|
828 |
'ZhengPeng7/BiRefNet',
|
829 |
trust_remote_code=True
|
|
|
18 |
from wheels.vggt.vggt.models.vggt import VGGT
|
19 |
from typing import *
|
20 |
from scipy.spatial.transform import Rotation
|
21 |
+
from transformers import AutoModelForImageSegmentation
|
22 |
|
23 |
def export_point_cloud(xyz, color):
|
24 |
# Convert tensors to numpy arrays if needed
|
|
|
329 |
|
330 |
return output
|
331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
def _get_birefnet_mask(self, image: Image.Image) -> np.ndarray:
|
333 |
"""Get object mask using BiRefNet"""
|
334 |
image_size = (1024, 1024)
|
|
|
815 |
del new_pipeline.VGGT_model.point_head
|
816 |
new_pipeline.VGGT_model.eval()
|
817 |
|
|
|
818 |
new_pipeline.birefnet_model = AutoModelForImageSegmentation.from_pretrained(
|
819 |
'ZhengPeng7/BiRefNet',
|
820 |
trust_remote_code=True
|