|
import os |
|
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" |
|
|
|
from fastapi import FastAPI, UploadFile, File |
|
from fastapi.middleware.cors import CORSMiddleware |
|
import torchaudio |
|
import torch |
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
import io |
|
|
|
app = FastAPI() |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali") |
|
model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali") |
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "Somali Speech-to-Text API is running."} |
|
|
|
@app.post("/transcribe") |
|
async def transcribe(file: UploadFile = File(...)): |
|
audio_bytes = await file.read() |
|
audio_stream = io.BytesIO(audio_bytes) |
|
|
|
waveform, sample_rate = torchaudio.load(audio_stream) |
|
|
|
if sample_rate != 16000: |
|
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) |
|
waveform = resampler(waveform) |
|
|
|
inputs = processor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.decode(predicted_ids[0]) |
|
return {"transcription": transcription} |
|
|