Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,44 @@
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, UploadFile, File
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
import torchaudio
|
4 |
import torch
|
5 |
-
from transformers import
|
6 |
-
import uvicorn
|
7 |
import io
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
# Allow
|
12 |
app.add_middleware(
|
13 |
CORSMiddleware,
|
14 |
allow_origins=["*"],
|
15 |
-
allow_credentials=True,
|
16 |
allow_methods=["*"],
|
17 |
allow_headers=["*"],
|
18 |
)
|
19 |
|
20 |
-
# Load model
|
21 |
processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali")
|
22 |
model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali")
|
23 |
|
24 |
-
@app.
|
25 |
-
async def
|
26 |
-
|
27 |
-
audio_bytes = io.BytesIO(contents)
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
if sample_rate != 16000:
|
32 |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
33 |
waveform = resampler(waveform)
|
34 |
|
35 |
inputs = processor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt")
|
|
|
36 |
with torch.no_grad():
|
37 |
logits = model(**inputs).logits
|
38 |
|
|
|
1 |
+
import os
|
2 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" # Important for Docker
|
3 |
+
|
4 |
from fastapi import FastAPI, UploadFile, File
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
import torchaudio
|
7 |
import torch
|
8 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
|
|
9 |
import io
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Allow all origins (for Flutter)
|
14 |
app.add_middleware(
|
15 |
CORSMiddleware,
|
16 |
allow_origins=["*"],
|
|
|
17 |
allow_methods=["*"],
|
18 |
allow_headers=["*"],
|
19 |
)
|
20 |
|
21 |
+
# Load model
|
22 |
processor = Wav2Vec2Processor.from_pretrained("Mustafaa4a/ASR-Somali")
|
23 |
model = Wav2Vec2ForCTC.from_pretrained("Mustafaa4a/ASR-Somali")
|
24 |
|
25 |
+
@app.get("/")
|
26 |
+
async def root():
|
27 |
+
return {"message": "Somali Speech-to-Text API is running."}
|
|
|
28 |
|
29 |
+
@app.post("/transcribe")
|
30 |
+
async def transcribe(file: UploadFile = File(...)):
|
31 |
+
audio_bytes = await file.read()
|
32 |
+
audio_stream = io.BytesIO(audio_bytes)
|
33 |
+
|
34 |
+
waveform, sample_rate = torchaudio.load(audio_stream)
|
35 |
|
36 |
if sample_rate != 16000:
|
37 |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
38 |
waveform = resampler(waveform)
|
39 |
|
40 |
inputs = processor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt")
|
41 |
+
|
42 |
with torch.no_grad():
|
43 |
logits = model(**inputs).logits
|
44 |
|