Spaces:
Sleeping
Sleeping
Boning c
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
import re,
|
5 |
from html import escape
|
6 |
|
|
|
7 |
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A3"
|
8 |
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-A1"
|
9 |
-
USAGE_LIMIT
|
10 |
-
RESET_MS
|
11 |
-
device
|
12 |
|
13 |
primary_model = primary_tokenizer = None
|
14 |
fallback_model = fallback_tokenizer = None
|
15 |
|
|
|
16 |
def load_models():
|
17 |
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
18 |
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL, trust_remote_code=True)
|
19 |
-
primary_model
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
def build_chat_prompt(history, user_input, reasoning_enabled):
|
25 |
system_flag = "/think" if reasoning_enabled else "/no_think"
|
26 |
prompt = f"<|system|>\n{system_flag}\n"
|
@@ -29,124 +36,151 @@ def build_chat_prompt(history, user_input, reasoning_enabled):
|
|
29 |
prompt += f"<|user|>\n{user_input}\n<|assistant|>\n"
|
30 |
return prompt
|
31 |
|
|
|
32 |
def format_thinking(text):
|
33 |
match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
|
34 |
if not match:
|
35 |
return escape(text)
|
36 |
reasoning = escape(match.group(1).strip())
|
37 |
visible = re.sub(r"<think>.*?</think>", "[thinking...]", text, flags=re.DOTALL).strip()
|
38 |
-
return
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
43 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
44 |
generated = input_ids
|
45 |
assistant_text = ""
|
|
|
46 |
for _ in range(max_length):
|
47 |
logits = model(generated).logits[:, -1, :] / temperature
|
48 |
-
sorted_logits,
|
49 |
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
|
|
50 |
mask = probs > top_p
|
51 |
mask[..., 1:] = mask[..., :-1].clone()
|
52 |
-
mask[..., 0]
|
53 |
filtered = logits.clone()
|
54 |
-
filtered[:,
|
|
|
55 |
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
|
56 |
generated = torch.cat([generated, next_token], dim=-1)
|
57 |
new_text = tokenizer.decode(next_token[0], skip_special_tokens=False)
|
58 |
assistant_text += new_text
|
|
|
|
|
59 |
if assistant_text.startswith("<|assistant|>"):
|
60 |
assistant_text = assistant_text[len("<|assistant|>"):]
|
|
|
|
|
61 |
if "<|user|>" in new_text:
|
62 |
break
|
|
|
63 |
yield assistant_text
|
|
|
64 |
if next_token.item() == tokenizer.eos_token_id:
|
65 |
break
|
66 |
|
|
|
67 |
def respond(message, history, reasoning_enabled, limit_json):
|
68 |
-
info
|
69 |
count = info.get("count", 0)
|
70 |
use_fallback = count > USAGE_LIMIT
|
71 |
-
remaining
|
72 |
-
model_label
|
|
|
|
|
73 |
prompt = build_chat_prompt(history, message.strip(), reasoning_enabled)
|
74 |
history = history + [[message, ""]]
|
75 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
76 |
-
|
|
|
|
|
77 |
formatted = format_thinking(chunk)
|
78 |
-
history[-1][1] =
|
|
|
|
|
79 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
|
|
|
|
80 |
yield history, history, f"π§ A3 left: {remaining}", "Send"
|
81 |
|
82 |
def clear_chat():
|
83 |
return [], [], "π§ A3 left: 5", "Send"
|
84 |
|
|
|
85 |
with gr.Blocks() as demo:
|
|
|
86 |
gr.HTML(f"""
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
123 |
usage_counter = gr.Textbox("π§ A3 left: 5", interactive=False, show_label=False)
|
124 |
|
125 |
-
chat_box
|
126 |
chat_state = gr.State([])
|
127 |
|
128 |
with gr.Row():
|
129 |
-
user_input
|
130 |
reason_toggle = gr.Checkbox(label="Reason", value=True, scale=1)
|
131 |
-
send_btn
|
132 |
-
|
133 |
-
update_btn = gr.Button(visible=False)
|
134 |
|
135 |
clear_btn = gr.Button("Clear")
|
136 |
|
137 |
model_status.value = load_models()
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
send_btn.click(None, _js="setGeneratingText").then(
|
142 |
fn=respond,
|
143 |
inputs=[user_input, chat_state, reason_toggle, limit_json],
|
144 |
outputs=[chat_box, chat_state, usage_counter, send_btn]
|
145 |
-
)
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
)
|
151 |
|
152 |
demo.queue()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import re, json
|
5 |
from html import escape
|
6 |
|
7 |
+
# βββ Config βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
8 |
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A3"
|
9 |
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-A1"
|
10 |
+
USAGE_LIMIT = 5
|
11 |
+
RESET_MS = 20 * 60 * 1000 # 20 minutes in milliseconds
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
primary_model = primary_tokenizer = None
|
15 |
fallback_model = fallback_tokenizer = None
|
16 |
|
17 |
+
# βββ Load Models βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
def load_models():
|
19 |
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
20 |
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL, trust_remote_code=True)
|
21 |
+
primary_model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
PRIMARY_MODEL, torch_dtype=torch.float16
|
23 |
+
).to(device).eval()
|
24 |
+
fallback_tokenizer= AutoTokenizer.from_pretrained(FALLBACK_MODEL, trust_remote_code=True)
|
25 |
+
fallback_model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
FALLBACK_MODEL, torch_dtype=torch.float16
|
27 |
+
).to(device).eval()
|
28 |
+
return f"β
Loaded {PRIMARY_MODEL} with fallback {FALLBACK_MODEL}"
|
29 |
+
|
30 |
+
# βββ Build Qwen-style Prompt ββββββββββββββββββββββββββββββββββββββββββ
|
31 |
def build_chat_prompt(history, user_input, reasoning_enabled):
|
32 |
system_flag = "/think" if reasoning_enabled else "/no_think"
|
33 |
prompt = f"<|system|>\n{system_flag}\n"
|
|
|
36 |
prompt += f"<|user|>\n{user_input}\n<|assistant|>\n"
|
37 |
return prompt
|
38 |
|
39 |
+
# βββ Collapse <think> Blocks ββββββββββββββββββββββββββββββββββββββββββ
|
40 |
def format_thinking(text):
|
41 |
match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
|
42 |
if not match:
|
43 |
return escape(text)
|
44 |
reasoning = escape(match.group(1).strip())
|
45 |
visible = re.sub(r"<think>.*?</think>", "[thinking...]", text, flags=re.DOTALL).strip()
|
46 |
+
return (
|
47 |
+
escape(visible)
|
48 |
+
+ "<br><details><summary>π§ Show reasoning</summary>"
|
49 |
+
+ f"<pre>{reasoning}</pre></details>"
|
50 |
+
)
|
51 |
|
52 |
+
# βββ TokenβbyβToken Streaming βββββββββββββββββββββββββββββββββββββββββ
|
53 |
+
def generate_stream(prompt, use_fallback=False,
|
54 |
+
max_length=100, temperature=0.2, top_p=0.9):
|
55 |
+
model = fallback_model if use_fallback else primary_model
|
56 |
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
57 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
58 |
generated = input_ids
|
59 |
assistant_text = ""
|
60 |
+
|
61 |
for _ in range(max_length):
|
62 |
logits = model(generated).logits[:, -1, :] / temperature
|
63 |
+
sorted_logits, idxs = torch.sort(logits, descending=True)
|
64 |
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
65 |
+
|
66 |
mask = probs > top_p
|
67 |
mask[..., 1:] = mask[..., :-1].clone()
|
68 |
+
mask[..., 0] = 0
|
69 |
filtered = logits.clone()
|
70 |
+
filtered[:, idxs[mask]] = -float("Inf")
|
71 |
+
|
72 |
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
|
73 |
generated = torch.cat([generated, next_token], dim=-1)
|
74 |
new_text = tokenizer.decode(next_token[0], skip_special_tokens=False)
|
75 |
assistant_text += new_text
|
76 |
+
|
77 |
+
# strip the opening assistant tag
|
78 |
if assistant_text.startswith("<|assistant|>"):
|
79 |
assistant_text = assistant_text[len("<|assistant|>"):]
|
80 |
+
|
81 |
+
# stop if model tries to start a new user turn
|
82 |
if "<|user|>" in new_text:
|
83 |
break
|
84 |
+
|
85 |
yield assistant_text
|
86 |
+
|
87 |
if next_token.item() == tokenizer.eos_token_id:
|
88 |
break
|
89 |
|
90 |
+
# βββ Main Respond Handler βββββββββββββββββββββββββββββββββββββββββββββ
|
91 |
def respond(message, history, reasoning_enabled, limit_json):
|
92 |
+
info = json.loads(limit_json) if limit_json else {"count": 0}
|
93 |
count = info.get("count", 0)
|
94 |
use_fallback = count > USAGE_LIMIT
|
95 |
+
remaining = max(0, USAGE_LIMIT - count)
|
96 |
+
model_label = "A3" if not use_fallback else "Fallback A1"
|
97 |
+
|
98 |
+
# show "Generatingβ¦" immediately
|
99 |
prompt = build_chat_prompt(history, message.strip(), reasoning_enabled)
|
100 |
history = history + [[message, ""]]
|
101 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
102 |
+
|
103 |
+
# stream assistant reply
|
104 |
+
for chunk in generate_stream(prompt, use_fallback):
|
105 |
formatted = format_thinking(chunk)
|
106 |
+
history[-1][1] = (
|
107 |
+
f"{formatted}<br><sub style='color:gray'>({model_label})</sub>"
|
108 |
+
)
|
109 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
110 |
+
|
111 |
+
# final: reset to Send
|
112 |
yield history, history, f"π§ A3 left: {remaining}", "Send"
|
113 |
|
114 |
def clear_chat():
|
115 |
return [], [], "π§ A3 left: 5", "Send"
|
116 |
|
117 |
+
# βββ Gradio UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
118 |
with gr.Blocks() as demo:
|
119 |
+
# Inject client-side JS + CSS
|
120 |
gr.HTML(f"""
|
121 |
+
<script>
|
122 |
+
// bump/reset usage in localStorage and write to hidden textbox
|
123 |
+
function updateUsageLimit() {{
|
124 |
+
const key = "samai_limit";
|
125 |
+
const now = Date.now();
|
126 |
+
let rec = JSON.parse(localStorage.getItem(key) || "null");
|
127 |
+
if (!rec || now - rec.lastSeen > {RESET_MS}) {{
|
128 |
+
rec = {{count:0, lastSeen: now}};
|
129 |
+
}}
|
130 |
+
rec.count += 1;
|
131 |
+
rec.lastSeen = now;
|
132 |
+
localStorage.setItem(key, JSON.stringify(rec));
|
133 |
+
document.getElementById("limit_json").value = JSON.stringify(rec);
|
134 |
+
}}
|
135 |
+
// on Send click: update limit & flip button text
|
136 |
+
document.addEventListener("DOMContentLoaded", () => {{
|
137 |
+
const btn = document.getElementById("send_btn");
|
138 |
+
btn.addEventListener("click", () => {{
|
139 |
+
updateUsageLimit();
|
140 |
+
btn.innerText = "Generatingβ¦";
|
141 |
+
}});
|
142 |
+
}});
|
143 |
+
</script>
|
144 |
+
<style>
|
145 |
+
.send-circle {{
|
146 |
+
border-radius: 50%;
|
147 |
+
height: 40px;
|
148 |
+
width: 40px;
|
149 |
+
padding: 0;
|
150 |
+
font-size: 12px;
|
151 |
+
text-align: center;
|
152 |
+
}}
|
153 |
+
</style>
|
154 |
+
""")
|
155 |
+
|
156 |
+
gr.Markdown("# π€ SamAI β Chat Reasoning (Final)")
|
157 |
+
|
158 |
+
# carry usage JSON from JS β Python
|
159 |
+
limit_json = gr.Textbox(visible=False, elem_id="limit_json")
|
160 |
+
model_status = gr.Textbox(interactive=False, label="Model Status")
|
161 |
usage_counter = gr.Textbox("π§ A3 left: 5", interactive=False, show_label=False)
|
162 |
|
163 |
+
chat_box = gr.Chatbot(type="tuples")
|
164 |
chat_state = gr.State([])
|
165 |
|
166 |
with gr.Row():
|
167 |
+
user_input = gr.Textbox(placeholder="Ask anything...", show_label=False, scale=6)
|
168 |
reason_toggle = gr.Checkbox(label="Reason", value=True, scale=1)
|
169 |
+
send_btn = gr.Button("Send", elem_id="send_btn", elem_classes=["send-circle"], scale=1)
|
|
|
|
|
170 |
|
171 |
clear_btn = gr.Button("Clear")
|
172 |
|
173 |
model_status.value = load_models()
|
174 |
|
175 |
+
send_btn.click(
|
|
|
|
|
176 |
fn=respond,
|
177 |
inputs=[user_input, chat_state, reason_toggle, limit_json],
|
178 |
outputs=[chat_box, chat_state, usage_counter, send_btn]
|
179 |
+
)
|
180 |
+
clear_btn.click(
|
181 |
+
fn=clear_chat,
|
182 |
+
inputs=[],
|
183 |
+
outputs=[chat_box, chat_state, usage_counter, send_btn]
|
184 |
)
|
185 |
|
186 |
demo.queue()
|