Spaces:
Sleeping
Sleeping
Boning c
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,26 +4,23 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
4 |
import re, time, json
|
5 |
from html import escape
|
6 |
|
7 |
-
# βββ Config βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
8 |
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A3"
|
9 |
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-A1"
|
10 |
USAGE_LIMIT = 5
|
11 |
-
RESET_MS = 20 * 60 * 1000
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
primary_model = primary_tokenizer = None
|
15 |
fallback_model = fallback_tokenizer = None
|
16 |
|
17 |
-
# βββ Load Models βββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
def load_models():
|
19 |
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
20 |
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL, trust_remote_code=True)
|
21 |
primary_model = AutoModelForCausalLM.from_pretrained(PRIMARY_MODEL, torch_dtype=torch.float16).to(device).eval()
|
22 |
fallback_tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL, trust_remote_code=True)
|
23 |
fallback_model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL, torch_dtype=torch.float16).to(device).eval()
|
24 |
-
return f"β
Loaded {PRIMARY_MODEL}
|
25 |
|
26 |
-
# βββ Prompt Builder ββββββββββββββββββββββββββββββββββββββββββββ
|
27 |
def build_chat_prompt(history, user_input, reasoning_enabled):
|
28 |
system_flag = "/think" if reasoning_enabled else "/no_think"
|
29 |
prompt = f"<|system|>\n{system_flag}\n"
|
@@ -32,7 +29,6 @@ def build_chat_prompt(history, user_input, reasoning_enabled):
|
|
32 |
prompt += f"<|user|>\n{user_input}\n<|assistant|>\n"
|
33 |
return prompt
|
34 |
|
35 |
-
# βββ Collapse <think> blocks ββββββββββββββββββββββββββββββββββ
|
36 |
def format_thinking(text):
|
37 |
match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
|
38 |
if not match:
|
@@ -41,122 +37,112 @@ def format_thinking(text):
|
|
41 |
visible = re.sub(r"<think>.*?</think>", "[thinking...]", text, flags=re.DOTALL).strip()
|
42 |
return escape(visible) + "<br><details><summary>π§ Show reasoning</summary><pre>" + reasoning + "</pre></details>"
|
43 |
|
44 |
-
# βββ Stream Generator βββββββββββββββββββββββββββββββββββββββββ
|
45 |
def generate_stream(prompt, use_fallback=False, max_length=100, temperature=0.2, top_p=0.9):
|
46 |
model = fallback_model if use_fallback else primary_model
|
47 |
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
48 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
49 |
generated = input_ids
|
50 |
assistant_text = ""
|
51 |
-
|
52 |
for _ in range(max_length):
|
53 |
logits = model(generated).logits[:, -1, :] / temperature
|
54 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
55 |
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
56 |
-
|
57 |
mask = probs > top_p
|
58 |
mask[..., 1:] = mask[..., :-1].clone()
|
59 |
mask[..., 0] = 0
|
60 |
filtered = logits.clone()
|
61 |
filtered[:, sorted_indices[mask]] = -float("Inf")
|
62 |
-
|
63 |
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
|
64 |
generated = torch.cat([generated, next_token], dim=-1)
|
65 |
new_text = tokenizer.decode(next_token[0], skip_special_tokens=False)
|
66 |
assistant_text += new_text
|
67 |
-
|
68 |
if assistant_text.startswith("<|assistant|>"):
|
69 |
assistant_text = assistant_text[len("<|assistant|>"):]
|
70 |
-
|
71 |
if "<|user|>" in new_text:
|
72 |
break
|
73 |
-
|
74 |
yield assistant_text
|
75 |
-
|
76 |
if next_token.item() == tokenizer.eos_token_id:
|
77 |
break
|
78 |
|
79 |
-
# βββ Respond Handler ββββββββββββββββββββββββββββββββββββββββββ
|
80 |
def respond(message, history, reasoning_enabled, limit_json):
|
81 |
info = json.loads(limit_json) if limit_json else {"count": 0}
|
82 |
count = info.get("count", 0)
|
83 |
-
|
84 |
use_fallback = count > USAGE_LIMIT
|
85 |
remaining = max(0, USAGE_LIMIT - count)
|
86 |
model_label = "A3" if not use_fallback else "Fallback A1"
|
87 |
prompt = build_chat_prompt(history, message.strip(), reasoning_enabled)
|
88 |
history = history + [[message, ""]]
|
89 |
-
|
90 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
91 |
-
|
92 |
for chunk in generate_stream(prompt, use_fallback=use_fallback):
|
93 |
formatted = format_thinking(chunk)
|
94 |
history[-1][1] = f"{formatted}<br><sub style='color:gray'>({model_label})</sub>"
|
95 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
96 |
-
|
97 |
yield history, history, f"π§ A3 left: {remaining}", "Send"
|
98 |
|
99 |
def clear_chat():
|
100 |
return [], [], "π§ A3 left: 5", "Send"
|
101 |
|
102 |
-
# βββ Gradio UI βββοΏ½οΏ½ββββββββββββββββββββββββββββββββββββββββββββ
|
103 |
with gr.Blocks() as demo:
|
104 |
-
gr.HTML(
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
|
142 |
with gr.Row():
|
143 |
-
user_input
|
144 |
-
reason_toggle= gr.Checkbox(label="Reason", value=True, scale=1)
|
145 |
-
send_btn
|
|
|
|
|
146 |
|
147 |
clear_btn = gr.Button("Clear")
|
148 |
|
149 |
model_status.value = load_models()
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
outputs=[limit_json]
|
155 |
-
).then(
|
156 |
fn=respond,
|
157 |
inputs=[user_input, chat_state, reason_toggle, limit_json],
|
158 |
outputs=[chat_box, chat_state, usage_counter, send_btn]
|
159 |
-
)
|
160 |
|
161 |
clear_btn.click(fn=clear_chat,
|
162 |
inputs=[],
|
|
|
4 |
import re, time, json
|
5 |
from html import escape
|
6 |
|
|
|
7 |
PRIMARY_MODEL = "Smilyai-labs/Sam-reason-A3"
|
8 |
FALLBACK_MODEL = "Smilyai-labs/Sam-reason-A1"
|
9 |
USAGE_LIMIT = 5
|
10 |
+
RESET_MS = 20 * 60 * 1000
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
primary_model = primary_tokenizer = None
|
14 |
fallback_model = fallback_tokenizer = None
|
15 |
|
|
|
16 |
def load_models():
|
17 |
global primary_model, primary_tokenizer, fallback_model, fallback_tokenizer
|
18 |
primary_tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL, trust_remote_code=True)
|
19 |
primary_model = AutoModelForCausalLM.from_pretrained(PRIMARY_MODEL, torch_dtype=torch.float16).to(device).eval()
|
20 |
fallback_tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL, trust_remote_code=True)
|
21 |
fallback_model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL, torch_dtype=torch.float16).to(device).eval()
|
22 |
+
return f"β
Loaded {PRIMARY_MODEL} + fallback {FALLBACK_MODEL}"
|
23 |
|
|
|
24 |
def build_chat_prompt(history, user_input, reasoning_enabled):
|
25 |
system_flag = "/think" if reasoning_enabled else "/no_think"
|
26 |
prompt = f"<|system|>\n{system_flag}\n"
|
|
|
29 |
prompt += f"<|user|>\n{user_input}\n<|assistant|>\n"
|
30 |
return prompt
|
31 |
|
|
|
32 |
def format_thinking(text):
|
33 |
match = re.search(r"<think>(.*?)</think>", text, re.DOTALL)
|
34 |
if not match:
|
|
|
37 |
visible = re.sub(r"<think>.*?</think>", "[thinking...]", text, flags=re.DOTALL).strip()
|
38 |
return escape(visible) + "<br><details><summary>π§ Show reasoning</summary><pre>" + reasoning + "</pre></details>"
|
39 |
|
|
|
40 |
def generate_stream(prompt, use_fallback=False, max_length=100, temperature=0.2, top_p=0.9):
|
41 |
model = fallback_model if use_fallback else primary_model
|
42 |
tokenizer = fallback_tokenizer if use_fallback else primary_tokenizer
|
43 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
44 |
generated = input_ids
|
45 |
assistant_text = ""
|
|
|
46 |
for _ in range(max_length):
|
47 |
logits = model(generated).logits[:, -1, :] / temperature
|
48 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
49 |
probs = torch.softmax(sorted_logits, dim=-1).cumsum(dim=-1)
|
|
|
50 |
mask = probs > top_p
|
51 |
mask[..., 1:] = mask[..., :-1].clone()
|
52 |
mask[..., 0] = 0
|
53 |
filtered = logits.clone()
|
54 |
filtered[:, sorted_indices[mask]] = -float("Inf")
|
|
|
55 |
next_token = torch.multinomial(torch.softmax(filtered, dim=-1), 1)
|
56 |
generated = torch.cat([generated, next_token], dim=-1)
|
57 |
new_text = tokenizer.decode(next_token[0], skip_special_tokens=False)
|
58 |
assistant_text += new_text
|
|
|
59 |
if assistant_text.startswith("<|assistant|>"):
|
60 |
assistant_text = assistant_text[len("<|assistant|>"):]
|
|
|
61 |
if "<|user|>" in new_text:
|
62 |
break
|
|
|
63 |
yield assistant_text
|
|
|
64 |
if next_token.item() == tokenizer.eos_token_id:
|
65 |
break
|
66 |
|
|
|
67 |
def respond(message, history, reasoning_enabled, limit_json):
|
68 |
info = json.loads(limit_json) if limit_json else {"count": 0}
|
69 |
count = info.get("count", 0)
|
|
|
70 |
use_fallback = count > USAGE_LIMIT
|
71 |
remaining = max(0, USAGE_LIMIT - count)
|
72 |
model_label = "A3" if not use_fallback else "Fallback A1"
|
73 |
prompt = build_chat_prompt(history, message.strip(), reasoning_enabled)
|
74 |
history = history + [[message, ""]]
|
|
|
75 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
|
|
76 |
for chunk in generate_stream(prompt, use_fallback=use_fallback):
|
77 |
formatted = format_thinking(chunk)
|
78 |
history[-1][1] = f"{formatted}<br><sub style='color:gray'>({model_label})</sub>"
|
79 |
yield history, history, f"π§ A3 left: {remaining}", "Generatingβ¦"
|
|
|
80 |
yield history, history, f"π§ A3 left: {remaining}", "Send"
|
81 |
|
82 |
def clear_chat():
|
83 |
return [], [], "π§ A3 left: 5", "Send"
|
84 |
|
|
|
85 |
with gr.Blocks() as demo:
|
86 |
+
gr.HTML(f"""
|
87 |
+
<script>
|
88 |
+
function updateUsageLimit() {{
|
89 |
+
let key = "samai_limit";
|
90 |
+
let now = Date.now();
|
91 |
+
let record = JSON.parse(localStorage.getItem(key) || "null");
|
92 |
+
if (!record || (now - record.lastSeen) > {RESET_MS}) {{
|
93 |
+
record = {{count: 0, lastSeen: now}};
|
94 |
+
}}
|
95 |
+
record.count += 1;
|
96 |
+
record.lastSeen = now;
|
97 |
+
localStorage.setItem(key, JSON.stringify(record));
|
98 |
+
document.getElementById("limit_json").value = JSON.stringify(record);
|
99 |
+
}}
|
100 |
+
|
101 |
+
function setGeneratingText() {{
|
102 |
+
document.getElementById("send_btn").innerText = "Generatingβ¦";
|
103 |
+
}}
|
104 |
+
function setIdleText() {{
|
105 |
+
document.getElementById("send_btn").innerText = "Send";
|
106 |
+
}}
|
107 |
+
</script>
|
108 |
+
<style>
|
109 |
+
.send-circle {{
|
110 |
+
border-radius: 50%;
|
111 |
+
height: 40px;
|
112 |
+
width: 40px;
|
113 |
+
padding: 0;
|
114 |
+
font-size: 12px;
|
115 |
+
text-align: center;
|
116 |
+
}}
|
117 |
+
</style>
|
118 |
+
""")
|
119 |
+
|
120 |
+
gr.Markdown("# π€ SamAI β Chat Reasoning (Gradio v3 Compatible)")
|
121 |
+
limit_json = gr.Textbox(visible=False, elem_id="limit_json")
|
122 |
+
model_status = gr.Textbox(interactive=False, label="Model Status")
|
123 |
+
usage_counter = gr.Textbox("π§ A3 left: 5", interactive=False, show_label=False)
|
124 |
+
|
125 |
+
chat_box = gr.Chatbot(type="tuples")
|
126 |
+
chat_state = gr.State([])
|
127 |
|
128 |
with gr.Row():
|
129 |
+
user_input = gr.Textbox(placeholder="Ask anything...", show_label=False, scale=6)
|
130 |
+
reason_toggle = gr.Checkbox(label="Reason", value=True, scale=1)
|
131 |
+
send_btn = gr.Button("Send", elem_id="send_btn", elem_classes=["send-circle"], scale=1)
|
132 |
+
|
133 |
+
update_btn = gr.Button(visible=False)
|
134 |
|
135 |
clear_btn = gr.Button("Clear")
|
136 |
|
137 |
model_status.value = load_models()
|
138 |
|
139 |
+
update_btn.click(None, _js="updateUsageLimit")
|
140 |
+
|
141 |
+
send_btn.click(None, _js="setGeneratingText").then(
|
|
|
|
|
142 |
fn=respond,
|
143 |
inputs=[user_input, chat_state, reason_toggle, limit_json],
|
144 |
outputs=[chat_box, chat_state, usage_counter, send_btn]
|
145 |
+
).then(fn=None, _js="setIdleText")
|
146 |
|
147 |
clear_btn.click(fn=clear_chat,
|
148 |
inputs=[],
|