Spaces:
Runtime error
Runtime error
gfjgfj
#5
by
mutaaaa
- opened
- app.py +5 -74
- requirements.txt +1 -6
app.py
CHANGED
@@ -1,76 +1,7 @@
|
|
1 |
-
import
|
2 |
-
import evaluate
|
3 |
-
import os
|
4 |
-
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
-
from datasets import Dataset
|
7 |
-
from sklearn.model_selection import train_test_split
|
8 |
-
from transformers import (AutoTokenizer, AutoModelForSequenceClassification,
|
9 |
-
TrainingArguments, Trainer)
|
10 |
|
11 |
-
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
# Login using e.g. `huggingface-cli login` to access this dataset
|
16 |
-
splits = {'train': 'train.json', 'test': 'test.json'}
|
17 |
-
df = pd.read_json("hf://datasets/Den4ikAI/gibberish_dataset/" + splits["train"])
|
18 |
-
df = df.head(500)
|
19 |
-
|
20 |
-
# Конвертируем датафрейм в Dataset
|
21 |
-
train, test = train_test_split(df, test_size=0.2)
|
22 |
-
train = Dataset.from_pandas(train)
|
23 |
-
test = Dataset.from_pandas(test)
|
24 |
-
|
25 |
-
# Выполняем предобработку текста
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=400)
|
27 |
-
|
28 |
-
def tokenize_function(examples):
|
29 |
-
return tokenizer(examples['text'], padding='max_length', truncation=True)
|
30 |
-
|
31 |
-
tokenized_train = train.map(tokenize_function)
|
32 |
-
tokenized_test = test.map(tokenize_function)
|
33 |
-
|
34 |
-
# Загружаем предобученную модель
|
35 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
36 |
-
model_name,
|
37 |
-
num_labels=4)
|
38 |
-
|
39 |
-
model.to("cpu")
|
40 |
-
|
41 |
-
# Задаем параметры обучения
|
42 |
-
training_args = TrainingArguments(
|
43 |
-
output_dir='test_trainer_log',
|
44 |
-
eval_strategy='epoch',
|
45 |
-
per_device_train_batch_size=6,
|
46 |
-
per_device_eval_batch_size=6,
|
47 |
-
num_train_epochs=5,
|
48 |
-
report_to='none'
|
49 |
-
)
|
50 |
-
|
51 |
-
metric = evaluate.load('f1')
|
52 |
-
def compute_metrics(eval_pred):
|
53 |
-
logits, labels = eval_pred
|
54 |
-
predictions = np.argmax(logits, axis=-1)
|
55 |
-
return metric.compute(
|
56 |
-
predictions=predictions,
|
57 |
-
references=labels,
|
58 |
-
average='micro'
|
59 |
-
)
|
60 |
-
|
61 |
-
# Выполняем обучение
|
62 |
-
trainer = Trainer(
|
63 |
-
model = model,
|
64 |
-
args = training_args,
|
65 |
-
train_dataset = tokenized_train,
|
66 |
-
eval_dataset = tokenized_test,
|
67 |
-
compute_metrics = compute_metrics)
|
68 |
-
|
69 |
-
trainer.train()
|
70 |
-
|
71 |
-
# Сохраняем модель
|
72 |
-
save_directory = './pt_save_pretrained'
|
73 |
-
#tokenizer.save_pretrained(save_directory)
|
74 |
-
model.save_pretrained(save_directory)
|
75 |
-
#alternatively save the trainer
|
76 |
-
#trainer.save_model('CustomModels/CustomHamSpam')
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def greet(name):
|
4 |
+
return "Hello " + name + "!!"
|
5 |
|
6 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,9 +1,4 @@
|
|
1 |
transformers
|
2 |
torch
|
3 |
accelerate
|
4 |
-
bitsandbytes
|
5 |
-
datasets
|
6 |
-
evaluate
|
7 |
-
pandas
|
8 |
-
numpy
|
9 |
-
scikit-learn
|
|
|
1 |
transformers
|
2 |
torch
|
3 |
accelerate
|
4 |
+
bitsandbytes
|
|
|
|
|
|
|
|
|
|