Spaces:
Runtime error
Runtime error
pipka
Browse files
app.py
CHANGED
@@ -1,46 +1,66 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
model_name = "DeepPavlov/rubert-base-cased"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import evaluate
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from datasets import Dataset
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from transformers import (AutoTokenizer, AutoModelForSequenceClassification,
|
8 |
+
TrainingArguments, Trainer)
|
9 |
|
10 |
model_name = "DeepPavlov/rubert-base-cased"
|
11 |
+
|
12 |
+
# Login using e.g. `huggingface-cli login` to access this dataset
|
13 |
+
splits = {'train': 'data/train-00000-of-00001.parquet', 'test': 'data/test-00000-of-00001.parquet'}
|
14 |
+
df = pd.read_parquet("hf://datasets/mteb/RuSciBenchOECDClassification/" + splits["train"])
|
15 |
+
|
16 |
+
# Конвертируем датафрейм в Dataset
|
17 |
+
train, test = train_test_split(df, test_size=0.2)
|
18 |
+
train = Dataset.from_pandas(train)
|
19 |
+
test = Dataset.from_pandas(test)
|
20 |
+
|
21 |
+
# Выполняем предобработку текста
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
+
|
24 |
+
def tokenize_function(examples):
|
25 |
+
return tokenizer(examples['text'], padding='max_length', truncation=True)
|
26 |
+
|
27 |
+
tokenized_train = train.map(tokenize_function)
|
28 |
+
tokenized_test = test.map(tokenize_function)
|
29 |
+
|
30 |
+
# Загружаем предобученную модель
|
31 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
32 |
+
model_name,
|
33 |
+
num_labels=28)
|
34 |
+
|
35 |
+
# Задаем параметры обучения
|
36 |
+
training_args = TrainingArguments(
|
37 |
+
output_dir = 'test_trainer_log',
|
38 |
+
evaluation_strategy = 'epoch',
|
39 |
+
per_device_train_batch_size = 6,
|
40 |
+
per_device_eval_batch_size = 6,
|
41 |
+
num_train_epochs = 5,
|
42 |
+
report_to='none')
|
43 |
+
|
44 |
+
# Определяем как считать метрику
|
45 |
+
metric = evaluate.load('f1')
|
46 |
+
def compute_metrics(eval_pred):
|
47 |
+
logits, labels = eval_pred
|
48 |
+
predictions = np.argmax(logits, axis=-1)
|
49 |
+
return metric.compute(predictions=predictions, references=labels)
|
50 |
+
|
51 |
+
# Выполняем обучение
|
52 |
+
trainer = Trainer(
|
53 |
+
model = model,
|
54 |
+
args = training_args,
|
55 |
+
train_dataset = tokenized_train,
|
56 |
+
eval_dataset = tokenized_test,
|
57 |
+
compute_metrics = compute_metrics)
|
58 |
+
|
59 |
+
trainer.train()
|
60 |
+
|
61 |
+
# Сохраняем модель
|
62 |
+
save_directory = './pt_save_pretrained'
|
63 |
+
#tokenizer.save_pretrained(save_directory)
|
64 |
+
model.save_pretrained(save_directory)
|
65 |
+
#alternatively save the trainer
|
66 |
+
#trainer.save_model('CustomModels/CustomHamSpam')
|