Spaces:
Runtime error
Runtime error
Merge remote-tracking branch 'origin/main'
Browse files
app.py
CHANGED
|
@@ -1,66 +1,46 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import numpy as np
|
| 5 |
-
from datasets import Dataset
|
| 6 |
-
from sklearn.model_selection import train_test_split
|
| 7 |
-
from transformers import (AutoTokenizer, AutoModelForSequenceClassification,
|
| 8 |
-
TrainingArguments, Trainer)
|
| 9 |
|
| 10 |
model_name = "DeepPavlov/rubert-base-cased"
|
| 11 |
-
|
| 12 |
-
# Login using e.g. `huggingface-cli login` to access this dataset
|
| 13 |
-
splits = {'train': 'data/train-00000-of-00001.parquet', 'test': 'data/test-00000-of-00001.parquet'}
|
| 14 |
-
df = pd.read_parquet("hf://datasets/mteb/RuSciBenchOECDClassification/" + splits["train"])
|
| 15 |
-
|
| 16 |
-
# Конвертируем датафрейм в Dataset
|
| 17 |
-
train, test = train_test_split(df, test_size=0.2)
|
| 18 |
-
train = Dataset.from_pandas(train)
|
| 19 |
-
test = Dataset.from_pandas(test)
|
| 20 |
-
|
| 21 |
-
# Выполняем предобработку текста
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
#tokenizer.save_pretrained(save_directory)
|
| 64 |
-
model.save_pretrained(save_directory)
|
| 65 |
-
#alternatively save the trainer
|
| 66 |
-
#trainer.save_model('CustomModels/CustomHamSpam')
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
model_name = "DeepPavlov/rubert-base-cased"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
texts = [
|
| 10 |
+
"Я хочу купить дом у своей тёти, как мне это сделать?",
|
| 11 |
+
"У меня прорвало трубу в доме, звонил в ЖКХ, они не отвечают.",
|
| 12 |
+
"Я убил человека и совершал много плохих действий"
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
| 16 |
+
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
outputs = model(**inputs)
|
| 19 |
+
predictions = torch.softmax(outputs.logits, dim=1)
|
| 20 |
+
|
| 21 |
+
num_labels = model.config.num_labels
|
| 22 |
+
labels = ["купля-продажа", "нарушение закона", "проблема с трубопроводом"][:num_labels]
|
| 23 |
+
|
| 24 |
+
for text, pred in zip(texts, predictions):
|
| 25 |
+
print(f"Текст: {text}")
|
| 26 |
+
for i, score in enumerate(pred):
|
| 27 |
+
if i < len(labels):
|
| 28 |
+
print(f"{labels[i]}: {score:.4f}")
|
| 29 |
+
else:
|
| 30 |
+
print(f"Класс {i}: {score:.4f} (метка не определена)")
|
| 31 |
+
print("---")
|
| 32 |
+
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("## Результаты классификации")
|
| 35 |
+
for text, pred in zip(texts, predictions):
|
| 36 |
+
with gr.Group():
|
| 37 |
+
gr.Textbox(text, label="Исходный текст", interactive=False)
|
| 38 |
+
for i, score in enumerate(pred):
|
| 39 |
+
if i < len(labels):
|
| 40 |
+
gr.Textbox(f"{labels[i]}: {score:.4f}",
|
| 41 |
+
label=f"Вероятность класса {i}",
|
| 42 |
+
interactive=False)
|
| 43 |
+
|
| 44 |
+
gr.Markdown("### Логи работы модели")
|
| 45 |
+
|
| 46 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|