Spaces:
Runtime error
Runtime error
File size: 2,244 Bytes
bf645f4 25d2d36 bf645f4 a852b8b 25d2d36 d6abe64 bf645f4 bc36b2e 13b9d86 bf645f4 25d2d36 bf645f4 bc36b2e bf645f4 25d2d36 bf645f4 3bbb15e a165845 3bbb15e bf645f4 7e3a23c bf645f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import datasets
import evaluate
import os
import pandas as pd
import numpy as np
from datasets import Dataset
from sklearn.model_selection import train_test_split
from transformers import (AutoTokenizer, AutoModelForSequenceClassification,
TrainingArguments, Trainer)
os.environ["CUDA_VISIBLE_DEVICES"] = ""
model_name = "cointegrated/rubert-tiny2"
# Login using e.g. `huggingface-cli login` to access this dataset
splits = {'train': 'train.json', 'test': 'test.json'}
df = pd.read_json("hf://datasets/Den4ikAI/gibberish_dataset/" + splits["train"])
df = df.head(500)
# Конвертируем датафрейм в Dataset
train, test = train_test_split(df, test_size=0.2)
train = Dataset.from_pandas(train)
test = Dataset.from_pandas(test)
# Выполняем предобработку текста
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=400)
def tokenize_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True)
tokenized_train = train.map(tokenize_function)
tokenized_test = test.map(tokenize_function)
# Загружаем предобученную модель
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=4)
model.to("cpu")
# Задаем параметры обучения
training_args = TrainingArguments(
output_dir='test_trainer_log',
eval_strategy='epoch',
per_device_train_batch_size=6,
per_device_eval_batch_size=6,
num_train_epochs=5,
report_to='none'
)
metric = evaluate.load('f1')
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(
predictions=predictions,
references=labels,
average='micro'
)
# Выполняем обучение
trainer = Trainer(
model = model,
args = training_args,
train_dataset = tokenized_train,
eval_dataset = tokenized_test,
compute_metrics = compute_metrics)
trainer.train()
# Сохраняем модель
save_directory = './pt_save_pretrained'
#tokenizer.save_pretrained(save_directory)
model.save_pretrained(save_directory)
#alternatively save the trainer
#trainer.save_model('CustomModels/CustomHamSpam') |