ShinnosukeU's picture
Upload folder using huggingface_hub
7598431 verified
import base64
from dataclasses import dataclass
from io import BytesIO
from pathlib import Path
from typing import Literal, cast
import gradio as gr
import jinja2
from openai import OpenAI
from PIL import Image
from pydantic import BaseModel
client = OpenAI()
TEMPLATES_DIR = Path(__file__).resolve().parent / "templates"
jinja_env = jinja2.Environment(loader=jinja2.FileSystemLoader(str(TEMPLATES_DIR)))
SYSTEM_PROMPT = "You are expert prompt engineer"
StyleName = Literal[
"General",
"Fashion",
"Emotional Lifestyle",
"Extreme Sports",
"Captivating",
"Image Replication",
"Red Bar Lighting",
"Teal Noir",
]
@dataclass(frozen=True)
class StyleDefinition:
name: StyleName
template_filename: str
info: str
STYLE_DEFINITIONS: dict[StyleName, StyleDefinition] = {
"General": StyleDefinition(
name="General",
template_filename="general_prompt.jinja",
info="Versatile, balanced storytelling with cinematic detail for most scenarios.",
),
"Fashion": StyleDefinition(
name="Fashion",
template_filename="fashion_prompt.jinja",
info="Editorial fashion aesthetic highlighting garments, styling, and runway polish.",
),
"Emotional Lifestyle": StyleDefinition(
name="Emotional Lifestyle",
template_filename="emotional_lifestyle_prompt.jinja",
info="Warm, candid lifestyle imagery that focuses on mood, relationships, and feelings.",
),
"Extreme Sports": StyleDefinition(
name="Extreme Sports",
template_filename="extreme_sports_prompt.jinja",
info="High-adrenaline action shots that emphasize energy, motion, and athletic feats.",
),
"Captivating": StyleDefinition(
name="Captivating",
template_filename="captivating_prompt.jinja",
info="Visually striking compositions with dramatic flair and memorable storytelling.",
),
"Image Replication": StyleDefinition(
name="Image Replication",
template_filename="image_replication_prompt.jinja",
info=(
"Mimic the reference image's composition, lighting, and styling exactly while"
" inserting the user or their face in place of the original subject. Eg. If the reference image is a music album cover, the user's face will be embedded in the album cover."
),
),
"Red Bar Lighting": StyleDefinition(
name="Red Bar Lighting",
template_filename="red_bar_lighting_prompt.jinja",
info="Red bar lighting style for image generation.",
),
"Teal Noir": StyleDefinition(
name="Teal Noir",
template_filename="teal_noir_prompt.jinja",
info="Teal noir style for image generation.",
)
}
PROMPT_TEMPLATES = {
style: jinja_env.get_template(config.template_filename)
for style, config in STYLE_DEFINITIONS.items()
}
DEFAULT_STYLE: StyleName = "General"
STYLE_CHOICES: tuple[StyleName, ...] = tuple(STYLE_DEFINITIONS.keys())
STYLE_INFORMATION_BLOCK = "\n".join(
f"- {style}: {config.info}" for style, config in STYLE_DEFINITIONS.items()
)
class StyleSelectionResponse(BaseModel):
style: StyleName
def process_prompt(user_image, reference_image, target_label: str, user_prompt: str, style: StyleName) -> str:
user_image_url = None
reference_image_url = None
if user_image is not None:
buffer = BytesIO()
user_image.convert("RGB").save(buffer, format="JPEG", quality=90)
b64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
user_image_url = f"data:image/jpeg;base64,{b64_image}"
if reference_image is not None:
buffer = BytesIO()
reference_image.convert("RGB").save(buffer, format="JPEG", quality=90)
b64_reference_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
reference_image_url = f"data:image/jpeg;base64,{b64_reference_image}"
try:
template = PROMPT_TEMPLATES[style]
except KeyError as error:
raise ValueError(f"Unsupported style: {style}") from error
user_content = template.render(user_prompt=user_prompt)
content = [{"type": "input_text", "text": user_content}]
if user_image_url is not None:
content.append({"type": "input_image", "image_url": user_image_url})
if reference_image_url is not None:
content.append({"type": "input_image", "image_url": reference_image_url})
response = client.responses.create(
model="gpt-5",
reasoning={"effort": "minimal"},
input=[
{
"role": "system",
"content": SYSTEM_PROMPT,
},
{
"role": "user",
"content": content,
}
],
)
return f"{response.output_text} {target_label.strip()}"
def recommend_style(user_prompt: str, reference_image: Image.Image | None) -> StyleSelectionResponse:
if reference_image is not None:
buffer = BytesIO()
reference_image.convert("RGB").save(buffer, format="JPEG", quality=90)
b64_reference_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
reference_image_url = f"data:image/jpeg;base64,{b64_reference_image}"
else:
reference_image_url = None
user_prompt = f"""You are an art director who must pick the most fitting style name for a user's prompt.
Consider the available styles and choose the single best option. User has provided the reference image.
Style Guide:
{STYLE_INFORMATION_BLOCK}
User Prompt:
{user_prompt}
"""
content = [{"type": "input_text", "text": user_prompt}]
if reference_image_url is not None:
content.append({
"type": "input_image", "image_url": reference_image_url
})
completion = client.responses.parse(
model="gpt-5-mini",
reasoning={"effort": "low"},
input=[{
"role": "user",
"content": content,
}],
text_format=StyleSelectionResponse,
)
return completion.output_parsed.style
def handle_auto_style_toggle(auto_enabled: bool) -> dict[str, object]:
return gr.update(interactive=not auto_enabled)
def generate_prompt_handler(
user_image,
reference_image,
target_label: str,
user_prompt: str,
current_style: str | None,
auto_style_enabled: bool,
):
if auto_style_enabled:
current_style = recommend_style(user_prompt, reference_image)
prompt_text = process_prompt(
user_image=user_image,
reference_image=reference_image,
target_label=target_label,
user_prompt=user_prompt,
style=current_style,
)
display_text = f"Selected style: {current_style}\n\n{prompt_text}"
return display_text, gr.update(value=current_style, interactive=False)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
user_image = gr.Image(
label="Upload user photo",
type="pil"
)
reference_image = gr.Image(
label="Optional: Upload reference image (Eg. movie poster, music album cover, etc.)",
type="pil",
)
target_label = gr.Textbox(
label="Enter target label",
placeholder="SMRA",
)
user_prompt = gr.Textbox(
label="Enter your prompt",
placeholder="picture of me while sitting in a chair in the ocean",
lines=4,
)
style_dropdown = gr.Dropdown(
choices=list(STYLE_CHOICES),
value=DEFAULT_STYLE,
label="Style Selection",
info="Choose the visual style for your enhanced prompt",
interactive=False,
)
auto_style_checkbox = gr.Checkbox(
label="Auto-select best style",
value=True,
)
generate_button = gr.Button("Generate Prompt")
with gr.Column():
prompt_output = gr.Textbox(
label="Style Prompt",
lines=20,
)
generate_button.click(
generate_prompt_handler,
inputs=[
user_image,
reference_image,
target_label,
user_prompt,
style_dropdown,
auto_style_checkbox,
],
outputs=[prompt_output, style_dropdown],
)
auto_style_checkbox.change(
handle_auto_style_toggle,
inputs=[auto_style_checkbox],
outputs=[style_dropdown],
)
demo.launch()