File size: 8,615 Bytes
53ef603 731ab6a 53ef603 731ab6a 53ef603 a4c6851 731ab6a 53ef603 731ab6a 53ef603 731ab6a 7598431 731ab6a a4c6851 731ab6a 7598431 731ab6a 0285664 731ab6a a4c6851 6a9502c a4c6851 6a9502c a4c6851 6a9502c a4c6851 6a9502c a4c6851 6a9502c a4c6851 53ef603 731ab6a 53ef603 731ab6a bce9dbe 731ab6a 6a9502c a4c6851 53ef603 0285664 53ef603 731ab6a 53ef603 731ab6a 53ef603 a4c6851 0285664 a4c6851 0285664 a4c6851 0285664 731ab6a 0285664 731ab6a a4c6851 731ab6a a4c6851 731ab6a a4c6851 731ab6a a4c6851 731ab6a a4c6851 731ab6a a4c6851 731ab6a aab1d81 731ab6a aab1d81 731ab6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import base64
from dataclasses import dataclass
from io import BytesIO
from pathlib import Path
from typing import Literal, cast
import gradio as gr
import jinja2
from openai import OpenAI
from PIL import Image
from pydantic import BaseModel
client = OpenAI()
TEMPLATES_DIR = Path(__file__).resolve().parent / "templates"
jinja_env = jinja2.Environment(loader=jinja2.FileSystemLoader(str(TEMPLATES_DIR)))
SYSTEM_PROMPT = "You are expert prompt engineer"
StyleName = Literal[
"General",
"Fashion",
"Emotional Lifestyle",
"Extreme Sports",
"Captivating",
"Image Replication",
"Red Bar Lighting",
"Teal Noir",
]
@dataclass(frozen=True)
class StyleDefinition:
name: StyleName
template_filename: str
info: str
STYLE_DEFINITIONS: dict[StyleName, StyleDefinition] = {
"General": StyleDefinition(
name="General",
template_filename="general_prompt.jinja",
info="Versatile, balanced storytelling with cinematic detail for most scenarios.",
),
"Fashion": StyleDefinition(
name="Fashion",
template_filename="fashion_prompt.jinja",
info="Editorial fashion aesthetic highlighting garments, styling, and runway polish.",
),
"Emotional Lifestyle": StyleDefinition(
name="Emotional Lifestyle",
template_filename="emotional_lifestyle_prompt.jinja",
info="Warm, candid lifestyle imagery that focuses on mood, relationships, and feelings.",
),
"Extreme Sports": StyleDefinition(
name="Extreme Sports",
template_filename="extreme_sports_prompt.jinja",
info="High-adrenaline action shots that emphasize energy, motion, and athletic feats.",
),
"Captivating": StyleDefinition(
name="Captivating",
template_filename="captivating_prompt.jinja",
info="Visually striking compositions with dramatic flair and memorable storytelling.",
),
"Image Replication": StyleDefinition(
name="Image Replication",
template_filename="image_replication_prompt.jinja",
info=(
"Mimic the reference image's composition, lighting, and styling exactly while"
" inserting the user or their face in place of the original subject. Eg. If the reference image is a music album cover, the user's face will be embedded in the album cover."
),
),
"Red Bar Lighting": StyleDefinition(
name="Red Bar Lighting",
template_filename="red_bar_lighting_prompt.jinja",
info="Red bar lighting style for image generation.",
),
"Teal Noir": StyleDefinition(
name="Teal Noir",
template_filename="teal_noir_prompt.jinja",
info="Teal noir style for image generation.",
)
}
PROMPT_TEMPLATES = {
style: jinja_env.get_template(config.template_filename)
for style, config in STYLE_DEFINITIONS.items()
}
DEFAULT_STYLE: StyleName = "General"
STYLE_CHOICES: tuple[StyleName, ...] = tuple(STYLE_DEFINITIONS.keys())
STYLE_INFORMATION_BLOCK = "\n".join(
f"- {style}: {config.info}" for style, config in STYLE_DEFINITIONS.items()
)
class StyleSelectionResponse(BaseModel):
style: StyleName
def process_prompt(user_image, reference_image, target_label: str, user_prompt: str, style: StyleName) -> str:
user_image_url = None
reference_image_url = None
if user_image is not None:
buffer = BytesIO()
user_image.convert("RGB").save(buffer, format="JPEG", quality=90)
b64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
user_image_url = f"data:image/jpeg;base64,{b64_image}"
if reference_image is not None:
buffer = BytesIO()
reference_image.convert("RGB").save(buffer, format="JPEG", quality=90)
b64_reference_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
reference_image_url = f"data:image/jpeg;base64,{b64_reference_image}"
try:
template = PROMPT_TEMPLATES[style]
except KeyError as error:
raise ValueError(f"Unsupported style: {style}") from error
user_content = template.render(user_prompt=user_prompt)
content = [{"type": "input_text", "text": user_content}]
if user_image_url is not None:
content.append({"type": "input_image", "image_url": user_image_url})
if reference_image_url is not None:
content.append({"type": "input_image", "image_url": reference_image_url})
response = client.responses.create(
model="gpt-5",
reasoning={"effort": "minimal"},
input=[
{
"role": "system",
"content": SYSTEM_PROMPT,
},
{
"role": "user",
"content": content,
}
],
)
return f"{response.output_text} {target_label.strip()}"
def recommend_style(user_prompt: str, reference_image: Image.Image | None) -> StyleSelectionResponse:
if reference_image is not None:
buffer = BytesIO()
reference_image.convert("RGB").save(buffer, format="JPEG", quality=90)
b64_reference_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
reference_image_url = f"data:image/jpeg;base64,{b64_reference_image}"
else:
reference_image_url = None
user_prompt = f"""You are an art director who must pick the most fitting style name for a user's prompt.
Consider the available styles and choose the single best option. User has provided the reference image.
Style Guide:
{STYLE_INFORMATION_BLOCK}
User Prompt:
{user_prompt}
"""
content = [{"type": "input_text", "text": user_prompt}]
if reference_image_url is not None:
content.append({
"type": "input_image", "image_url": reference_image_url
})
completion = client.responses.parse(
model="gpt-5-mini",
reasoning={"effort": "low"},
input=[{
"role": "user",
"content": content,
}],
text_format=StyleSelectionResponse,
)
return completion.output_parsed.style
def handle_auto_style_toggle(auto_enabled: bool) -> dict[str, object]:
return gr.update(interactive=not auto_enabled)
def generate_prompt_handler(
user_image,
reference_image,
target_label: str,
user_prompt: str,
current_style: str | None,
auto_style_enabled: bool,
):
if auto_style_enabled:
current_style = recommend_style(user_prompt, reference_image)
prompt_text = process_prompt(
user_image=user_image,
reference_image=reference_image,
target_label=target_label,
user_prompt=user_prompt,
style=current_style,
)
display_text = f"Selected style: {current_style}\n\n{prompt_text}"
return display_text, gr.update(value=current_style, interactive=False)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
user_image = gr.Image(
label="Upload user photo",
type="pil"
)
reference_image = gr.Image(
label="Optional: Upload reference image (Eg. movie poster, music album cover, etc.)",
type="pil",
)
target_label = gr.Textbox(
label="Enter target label",
placeholder="SMRA",
)
user_prompt = gr.Textbox(
label="Enter your prompt",
placeholder="picture of me while sitting in a chair in the ocean",
lines=4,
)
style_dropdown = gr.Dropdown(
choices=list(STYLE_CHOICES),
value=DEFAULT_STYLE,
label="Style Selection",
info="Choose the visual style for your enhanced prompt",
interactive=False,
)
auto_style_checkbox = gr.Checkbox(
label="Auto-select best style",
value=True,
)
generate_button = gr.Button("Generate Prompt")
with gr.Column():
prompt_output = gr.Textbox(
label="Style Prompt",
lines=20,
)
generate_button.click(
generate_prompt_handler,
inputs=[
user_image,
reference_image,
target_label,
user_prompt,
style_dropdown,
auto_style_checkbox,
],
outputs=[prompt_output, style_dropdown],
)
auto_style_checkbox.change(
handle_auto_style_toggle,
inputs=[auto_style_checkbox],
outputs=[style_dropdown],
)
demo.launch()
|