ShesterG's picture
Add application file
ceeabec
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
import decord
from decord import VideoReader
from decord import cpu, gpu
import numpy as np
import os
import pickle
import gzip
from pathlib import Path
import argparse
import json
import csv
import glob
import time
from typing import List, Union, Optional, Tuple
class DINOEmbedder:
"""
A class for extracting DINOv2 embeddings from video frames or images.
"""
def __init__(self, dino_model_path: str, batch_size: int = 128, device: Optional[str] = None):
"""
Initialize the DINOEmbedder.
Args:
dino_model_path: Path to the fine-tuned DINOv2 model
batch_size: Batch size for processing frames
device: Device to use ('cuda' or 'cpu'). Auto-detected if None
"""
self.dino_model_path = dino_model_path
self.batch_size = batch_size
self.device = device if device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize model
self.model = self._load_dino_model()
self.model.eval()
# Initialize transform
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
print(f"DINOEmbedder initialized on device: {self.device}")
def _load_dino_model(self) -> nn.Module:
"""Load the fine-tuned DINOv2 model."""
# Load the original DINOv2 model with the correct architecture
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg', pretrained=False)
# Load fine-tuned weights
pretrained = torch.load(self.dino_model_path, map_location=self.device)
# Make correct state dict for loading
new_state_dict = {}
for key, value in pretrained['teacher'].items():
if 'dino_head' in key:
continue # Skip dino_head layers
else:
new_key = key.replace('backbone.', '')
new_state_dict[new_key] = value
# Change shape of pos_embed
pos_embed = nn.Parameter(torch.zeros(1, 257, 384))
model.pos_embed = pos_embed
# Load state dict
model.load_state_dict(new_state_dict, strict=True)
# Move model to device
model.to(self.device)
return model
def _preprocess_frame(self, frame: np.ndarray) -> torch.Tensor:
"""Preprocess a single frame."""
if isinstance(frame, np.ndarray):
image = Image.fromarray(frame)
else:
image = frame
tensor = self.transform(image)
# Ensure only RGB channels are considered
return tensor[:3]
def _preprocess_frames_batch(self, frames: List[np.ndarray]) -> torch.Tensor:
"""Preprocess a batch of frames."""
batch_tensors = torch.stack([self._preprocess_frame(frame) for frame in frames])
return batch_tensors.to(self.device)
def extract_embeddings_from_frames(self, frames: List[np.ndarray]) -> np.ndarray:
"""
Extract DINOv2 embeddings from a list of frames.
Args:
frames: List of frames as numpy arrays
Returns:
Numpy array of embeddings with shape (num_frames, embedding_dim)
"""
all_embeddings = []
# Process frames in batches
for idx in range(0, len(frames), self.batch_size):
batch_frames = frames[idx:idx + self.batch_size]
# Preprocess batch
batch_tensors = self._preprocess_frames_batch(batch_frames)
# Extract embeddings
with torch.no_grad():
batch_embeddings = self.model(batch_tensors).cpu().numpy()
all_embeddings.append(batch_embeddings)
# Concatenate all embeddings
embeddings = np.concatenate(all_embeddings, axis=0)
return embeddings
def extract_embeddings_from_video(self, video_input: Union[str, VideoReader],
target_size: Tuple[int, int] = (224, 224)) -> np.ndarray:
"""
Extract DINOv2 embeddings from a video.
Args:
video_input: Either a path to video file (str) or a VideoReader object
target_size: Target size for video frames (width, height)
Returns:
Numpy array of embeddings with shape (num_frames, embedding_dim)
"""
# Handle different input types
if isinstance(video_input, str):
video_path = Path(video_input)
if not video_path.exists():
raise FileNotFoundError(f"Video file not found: {video_input}")
try:
vr = VideoReader(str(video_path), width=target_size[0], height=target_size[1])
except Exception as e:
raise RuntimeError(f"Error loading video {video_input}: {e}")
# elif hasattr(video_input, 'get_batch'):
else:
vr = video_input
# else:
# raise TypeError("video_input must be either a file path (str) or a VideoReader object")
total_frames = len(vr)
all_embeddings = []
# Process video in batches
for idx in range(0, total_frames, self.batch_size):
batch_indices = range(idx, min(idx + self.batch_size, total_frames))
# batch_frames = vr.get_batch(batch_indices).asnumpy()
batch_frames = vr[batch_indices]
# Preprocess batch
batch_tensors = self._preprocess_frames_batch(batch_frames)
# Extract embeddings
with torch.no_grad():
batch_embeddings = self.model(batch_tensors).cpu().numpy()
all_embeddings.append(batch_embeddings)
# Concatenate all embeddings
embeddings = np.concatenate(all_embeddings, axis=0)
return embeddings
def extract_embeddings_from_video_and_save(self, video_path: str, output_folder: str) -> str:
"""
Extract embeddings from video and save to file.
Args:
video_path: Path to the video file
output_folder: Folder to save the embeddings
Returns:
Path to the saved embeddings file
"""
# Create output folder if it doesn't exist
Path(output_folder).mkdir(parents=True, exist_ok=True)
# Extract embeddings
embeddings = self.extract_embeddings_from_video(video_path)
# Save embeddings
video_name = Path(video_path).stem
np_path = Path(output_folder) / f"{video_name}.npy"
np.save(np_path, embeddings)
return str(np_path)
def extract_embedding_from_single_image(self, image: Union[np.ndarray, Image.Image]) -> np.ndarray:
"""
Extract DINOv2 embedding from a single image.
Args:
image: Image as numpy array or PIL Image
Returns:
Numpy array of embedding with shape (1, embedding_dim)
"""
# Preprocess image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
tensor = self.transform(image).unsqueeze(0).to(self.device)
# Extract embedding
with torch.no_grad():
embedding = self.model(tensor).cpu().numpy()
return embedding
# Convenience functions for backward compatibility
def extract_embeddings_from_frames(frames: List[np.ndarray], dino_model_path: str,
batch_size: int = 128) -> np.ndarray:
"""
Convenience function to extract embeddings from frames.
Args:
frames: List of frames as numpy arrays
dino_model_path: Path to the fine-tuned DINOv2 model
batch_size: Batch size for processing
Returns:
Numpy array of embeddings
"""
embedder = DINOEmbedder(dino_model_path, batch_size)
return embedder.extract_embeddings_from_frames(frames)
def extract_embeddings_from_video(video_path: str, dino_model_path: str,
batch_size: int = 128) -> np.ndarray:
"""
Convenience function to extract embeddings from video.
Args:
video_path: Path to the video file
dino_model_path: Path to the fine-tuned DINOv2 model
batch_size: Batch size for processing
Returns:
Numpy array of embeddings
"""
embedder = DINOEmbedder(dino_model_path, batch_size)
return embedder.extract_embeddings_from_video(video_path)
def video_to_embeddings(video_path: str, output_folder: str, dino_path: str, batch_size: int = 128):
"""
Original function for backward compatibility with command-line usage.
"""
try:
embedder = DINOEmbedder(dino_path, batch_size)
embedder.extract_embeddings_from_video_and_save(video_path, output_folder)
except Exception as e:
print(f'Error processing {video_path}: {e}')
# Utility functions for batch processing
def get_mp4_files(directory: str) -> List[str]:
"""Get all MP4 files in a directory."""
if not os.path.exists(directory):
raise FileNotFoundError(f'Directory not found: {directory}')
mp4_files = glob.glob(os.path.join(directory, '*.mp4'))
return [os.path.abspath(file) for file in mp4_files]
def load_file(filename: str):
"""Load a pickled and gzipped file."""
with gzip.open(filename, "rb") as f:
return pickle.load(f)
def is_string_in_file(file_path: str, target_string: str) -> bool:
"""Check if a string exists in a file."""
try:
with Path(file_path).open("r") as f:
for line in f:
if target_string in line:
return True
return False
except Exception as e:
print(f"Error: {e}")
return False
def main():
"""Main function for command-line usage."""
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=True,
help='index of the sub_list to work with')
parser.add_argument('--time_limit', type=int, required=True,
help='time limit in seconds')
parser.add_argument('--batch_size', type=int, required=True,
help='number of videos to process in this batch')
parser.add_argument('--files_list', type=str, required=True,
help='path to the files list file')
parser.add_argument('--output_folder', type=str, required=True,
help='path to the output folder')
parser.add_argument('--dino_path', type=str, required=True,
help='path to the dino model')
args = parser.parse_args()
start_time = time.time()
# Load files list
fixed_list = load_file(args.files_list)
# Create output folder if it doesn't exist
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
# Initialize embedder
embedder = DINOEmbedder(args.dino_path, batch_size=512)
# Process videos in batches
video_batches = [fixed_list[i:i + args.batch_size] for i in range(0, len(fixed_list), args.batch_size)]
print(f"Total number of video batches: {len(video_batches)}")
for video_path in video_batches[args.index]:
current_time = time.time()
if current_time - start_time > args.time_limit:
print("Time limit reached. Stopping execution.")
break
video_name = Path(video_path).stem
np_path = Path(args.output_folder) / f"{video_name}.npy"
if np_path.exists():
print(f"Skipping {video_path} - output already exists")
continue
else:
try:
print(f"Processing {video_path}")
embedder.extract_embeddings_from_video_and_save(video_path, args.output_folder)
print(f"Successfully processed {video_path}")
except Exception as e:
print(f"Error processing {video_path}: {e}")
if __name__ == "__main__":
main()