Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,529 Bytes
ceeabec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
import decord
from decord import VideoReader
from decord import cpu, gpu
import numpy as np
import os
import pickle
import gzip
from pathlib import Path
import argparse
import json
import csv
import glob
import time
from typing import List, Union, Optional, Tuple
class DINOEmbedder:
"""
A class for extracting DINOv2 embeddings from video frames or images.
"""
def __init__(self, dino_model_path: str, batch_size: int = 128, device: Optional[str] = None):
"""
Initialize the DINOEmbedder.
Args:
dino_model_path: Path to the fine-tuned DINOv2 model
batch_size: Batch size for processing frames
device: Device to use ('cuda' or 'cpu'). Auto-detected if None
"""
self.dino_model_path = dino_model_path
self.batch_size = batch_size
self.device = device if device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize model
self.model = self._load_dino_model()
self.model.eval()
# Initialize transform
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
print(f"DINOEmbedder initialized on device: {self.device}")
def _load_dino_model(self) -> nn.Module:
"""Load the fine-tuned DINOv2 model."""
# Load the original DINOv2 model with the correct architecture
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg', pretrained=False)
# Load fine-tuned weights
pretrained = torch.load(self.dino_model_path, map_location=self.device)
# Make correct state dict for loading
new_state_dict = {}
for key, value in pretrained['teacher'].items():
if 'dino_head' in key:
continue # Skip dino_head layers
else:
new_key = key.replace('backbone.', '')
new_state_dict[new_key] = value
# Change shape of pos_embed
pos_embed = nn.Parameter(torch.zeros(1, 257, 384))
model.pos_embed = pos_embed
# Load state dict
model.load_state_dict(new_state_dict, strict=True)
# Move model to device
model.to(self.device)
return model
def _preprocess_frame(self, frame: np.ndarray) -> torch.Tensor:
"""Preprocess a single frame."""
if isinstance(frame, np.ndarray):
image = Image.fromarray(frame)
else:
image = frame
tensor = self.transform(image)
# Ensure only RGB channels are considered
return tensor[:3]
def _preprocess_frames_batch(self, frames: List[np.ndarray]) -> torch.Tensor:
"""Preprocess a batch of frames."""
batch_tensors = torch.stack([self._preprocess_frame(frame) for frame in frames])
return batch_tensors.to(self.device)
def extract_embeddings_from_frames(self, frames: List[np.ndarray]) -> np.ndarray:
"""
Extract DINOv2 embeddings from a list of frames.
Args:
frames: List of frames as numpy arrays
Returns:
Numpy array of embeddings with shape (num_frames, embedding_dim)
"""
all_embeddings = []
# Process frames in batches
for idx in range(0, len(frames), self.batch_size):
batch_frames = frames[idx:idx + self.batch_size]
# Preprocess batch
batch_tensors = self._preprocess_frames_batch(batch_frames)
# Extract embeddings
with torch.no_grad():
batch_embeddings = self.model(batch_tensors).cpu().numpy()
all_embeddings.append(batch_embeddings)
# Concatenate all embeddings
embeddings = np.concatenate(all_embeddings, axis=0)
return embeddings
def extract_embeddings_from_video(self, video_input: Union[str, VideoReader],
target_size: Tuple[int, int] = (224, 224)) -> np.ndarray:
"""
Extract DINOv2 embeddings from a video.
Args:
video_input: Either a path to video file (str) or a VideoReader object
target_size: Target size for video frames (width, height)
Returns:
Numpy array of embeddings with shape (num_frames, embedding_dim)
"""
# Handle different input types
if isinstance(video_input, str):
video_path = Path(video_input)
if not video_path.exists():
raise FileNotFoundError(f"Video file not found: {video_input}")
try:
vr = VideoReader(str(video_path), width=target_size[0], height=target_size[1])
except Exception as e:
raise RuntimeError(f"Error loading video {video_input}: {e}")
# elif hasattr(video_input, 'get_batch'):
else:
vr = video_input
# else:
# raise TypeError("video_input must be either a file path (str) or a VideoReader object")
total_frames = len(vr)
all_embeddings = []
# Process video in batches
for idx in range(0, total_frames, self.batch_size):
batch_indices = range(idx, min(idx + self.batch_size, total_frames))
# batch_frames = vr.get_batch(batch_indices).asnumpy()
batch_frames = vr[batch_indices]
# Preprocess batch
batch_tensors = self._preprocess_frames_batch(batch_frames)
# Extract embeddings
with torch.no_grad():
batch_embeddings = self.model(batch_tensors).cpu().numpy()
all_embeddings.append(batch_embeddings)
# Concatenate all embeddings
embeddings = np.concatenate(all_embeddings, axis=0)
return embeddings
def extract_embeddings_from_video_and_save(self, video_path: str, output_folder: str) -> str:
"""
Extract embeddings from video and save to file.
Args:
video_path: Path to the video file
output_folder: Folder to save the embeddings
Returns:
Path to the saved embeddings file
"""
# Create output folder if it doesn't exist
Path(output_folder).mkdir(parents=True, exist_ok=True)
# Extract embeddings
embeddings = self.extract_embeddings_from_video(video_path)
# Save embeddings
video_name = Path(video_path).stem
np_path = Path(output_folder) / f"{video_name}.npy"
np.save(np_path, embeddings)
return str(np_path)
def extract_embedding_from_single_image(self, image: Union[np.ndarray, Image.Image]) -> np.ndarray:
"""
Extract DINOv2 embedding from a single image.
Args:
image: Image as numpy array or PIL Image
Returns:
Numpy array of embedding with shape (1, embedding_dim)
"""
# Preprocess image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
tensor = self.transform(image).unsqueeze(0).to(self.device)
# Extract embedding
with torch.no_grad():
embedding = self.model(tensor).cpu().numpy()
return embedding
# Convenience functions for backward compatibility
def extract_embeddings_from_frames(frames: List[np.ndarray], dino_model_path: str,
batch_size: int = 128) -> np.ndarray:
"""
Convenience function to extract embeddings from frames.
Args:
frames: List of frames as numpy arrays
dino_model_path: Path to the fine-tuned DINOv2 model
batch_size: Batch size for processing
Returns:
Numpy array of embeddings
"""
embedder = DINOEmbedder(dino_model_path, batch_size)
return embedder.extract_embeddings_from_frames(frames)
def extract_embeddings_from_video(video_path: str, dino_model_path: str,
batch_size: int = 128) -> np.ndarray:
"""
Convenience function to extract embeddings from video.
Args:
video_path: Path to the video file
dino_model_path: Path to the fine-tuned DINOv2 model
batch_size: Batch size for processing
Returns:
Numpy array of embeddings
"""
embedder = DINOEmbedder(dino_model_path, batch_size)
return embedder.extract_embeddings_from_video(video_path)
def video_to_embeddings(video_path: str, output_folder: str, dino_path: str, batch_size: int = 128):
"""
Original function for backward compatibility with command-line usage.
"""
try:
embedder = DINOEmbedder(dino_path, batch_size)
embedder.extract_embeddings_from_video_and_save(video_path, output_folder)
except Exception as e:
print(f'Error processing {video_path}: {e}')
# Utility functions for batch processing
def get_mp4_files(directory: str) -> List[str]:
"""Get all MP4 files in a directory."""
if not os.path.exists(directory):
raise FileNotFoundError(f'Directory not found: {directory}')
mp4_files = glob.glob(os.path.join(directory, '*.mp4'))
return [os.path.abspath(file) for file in mp4_files]
def load_file(filename: str):
"""Load a pickled and gzipped file."""
with gzip.open(filename, "rb") as f:
return pickle.load(f)
def is_string_in_file(file_path: str, target_string: str) -> bool:
"""Check if a string exists in a file."""
try:
with Path(file_path).open("r") as f:
for line in f:
if target_string in line:
return True
return False
except Exception as e:
print(f"Error: {e}")
return False
def main():
"""Main function for command-line usage."""
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=True,
help='index of the sub_list to work with')
parser.add_argument('--time_limit', type=int, required=True,
help='time limit in seconds')
parser.add_argument('--batch_size', type=int, required=True,
help='number of videos to process in this batch')
parser.add_argument('--files_list', type=str, required=True,
help='path to the files list file')
parser.add_argument('--output_folder', type=str, required=True,
help='path to the output folder')
parser.add_argument('--dino_path', type=str, required=True,
help='path to the dino model')
args = parser.parse_args()
start_time = time.time()
# Load files list
fixed_list = load_file(args.files_list)
# Create output folder if it doesn't exist
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
# Initialize embedder
embedder = DINOEmbedder(args.dino_path, batch_size=512)
# Process videos in batches
video_batches = [fixed_list[i:i + args.batch_size] for i in range(0, len(fixed_list), args.batch_size)]
print(f"Total number of video batches: {len(video_batches)}")
for video_path in video_batches[args.index]:
current_time = time.time()
if current_time - start_time > args.time_limit:
print("Time limit reached. Stopping execution.")
break
video_name = Path(video_path).stem
np_path = Path(args.output_folder) / f"{video_name}.npy"
if np_path.exists():
print(f"Skipping {video_path} - output already exists")
continue
else:
try:
print(f"Processing {video_path}")
embedder.extract_embeddings_from_video_and_save(video_path, args.output_folder)
print(f"Successfully processed {video_path}")
except Exception as e:
print(f"Error processing {video_path}: {e}")
if __name__ == "__main__":
main() |