Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
shaoan xie
commited on
Commit
·
d124f41
1
Parent(s):
bc2c9f6
add
Browse files- .idea/.gitignore +8 -0
- app.py +180 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import pickle
|
4 |
+
from torchvision.utils import save_image
|
5 |
+
import numpy as np
|
6 |
+
from diffusers import StableDiffusionUpscalePipeline
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Load the model from Hugging Face Hub
|
11 |
+
model_path = hf_hub_download(repo_id="Shaoan/ConceptGAN", filename="augceleba_6451.pkl")
|
12 |
+
|
13 |
+
with open(model_path, 'rb') as f:
|
14 |
+
G = pickle.load(f)['G_ema'].cpu().float() # torch.nn.Module
|
15 |
+
|
16 |
+
|
17 |
+
cchoices = ['Bald',
|
18 |
+
'Black Hair',
|
19 |
+
'Blond Hair',
|
20 |
+
'Smiling',
|
21 |
+
'NoSmile',
|
22 |
+
'Male',
|
23 |
+
'Female'
|
24 |
+
]
|
25 |
+
|
26 |
+
model_choices = [
|
27 |
+
'Change Dim = 8',
|
28 |
+
'Change Dim = 15',
|
29 |
+
'Change Dim = 30',
|
30 |
+
'Change Dim = 60'
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
cchoices = [
|
35 |
+
'Big Nose',
|
36 |
+
'Black Hair',
|
37 |
+
'Blond Hair',
|
38 |
+
'Chubby',
|
39 |
+
'Eyeglasses',
|
40 |
+
'Male',
|
41 |
+
'Pale Skin',
|
42 |
+
'Smiling',
|
43 |
+
'Straight Hair',
|
44 |
+
'Wavy Hair',
|
45 |
+
'Wearing Hat',
|
46 |
+
'Young'
|
47 |
+
]
|
48 |
+
|
49 |
+
|
50 |
+
import requests
|
51 |
+
from PIL import Image
|
52 |
+
from io import BytesIO
|
53 |
+
from diffusers import LDMSuperResolutionPipeline
|
54 |
+
import torch
|
55 |
+
|
56 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
57 |
+
model_id = "CompVis/ldm-super-resolution-4x-openimages"
|
58 |
+
|
59 |
+
# load model and scheduler
|
60 |
+
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
|
61 |
+
pipeline = pipeline.to(device)
|
62 |
+
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
63 |
+
text_pipeline = StableDiffusionUpscalePipeline.from_pretrained(
|
64 |
+
model_id, variant="fp32", torch_dtype=torch.float32
|
65 |
+
)
|
66 |
+
# let's download an image
|
67 |
+
|
68 |
+
|
69 |
+
def super_res(low_res_img, num_steps):
|
70 |
+
# run pipeline in inference (sample random noise and denoise)
|
71 |
+
upscaled_image = pipeline(low_res_img, num_inference_steps=num_steps, eta=1).images[0]
|
72 |
+
#upscaled_image = text_pipeline(prompt="a sharp image of human face", image=low_res_img, num_inference_steps=75).images[0]
|
73 |
+
return upscaled_image
|
74 |
+
|
75 |
+
|
76 |
+
@torch.no_grad()
|
77 |
+
def generate(seed, upscale, upscale_steps,*checkboxes):
|
78 |
+
z = torch.randn([1, G.z_dim], generator=torch.Generator().manual_seed(seed))
|
79 |
+
#m = torch.tensor([[1, 0, 0, 0, 1, 1, 0.]]).repeat(1, 1)
|
80 |
+
checkboxes_vector = torch.zeros([20])
|
81 |
+
for i in range(len(checkboxes)):
|
82 |
+
if i == 1:
|
83 |
+
checkboxes_vector[cchoices.index('Black Hair')] = checkboxes[i]
|
84 |
+
elif i == 2:
|
85 |
+
checkboxes_vector[cchoices.index('Blond Hair')] = checkboxes[i]
|
86 |
+
elif i == 3:
|
87 |
+
checkboxes_vector[cchoices.index('Straight Hair')] = checkboxes[i]
|
88 |
+
elif i == 4:
|
89 |
+
checkboxes_vector[cchoices.index('Wavy Hair')] = checkboxes[i]
|
90 |
+
elif i == 5:
|
91 |
+
checkboxes_vector[cchoices.index('Young')] = checkboxes[i] * 2
|
92 |
+
elif i == 6:
|
93 |
+
checkboxes_vector[cchoices.index('Male')] = checkboxes[i]
|
94 |
+
elif i == 9:
|
95 |
+
checkboxes_vector[cchoices.index('Big Nose')] = checkboxes[i]
|
96 |
+
elif i == 10:
|
97 |
+
checkboxes_vector[cchoices.index('Chubby')] = checkboxes[i]
|
98 |
+
elif i == 11:
|
99 |
+
checkboxes_vector[cchoices.index('Eyeglasses')] = checkboxes[i] * 2
|
100 |
+
elif i == 12:
|
101 |
+
checkboxes_vector[cchoices.index('Pale Skin')] = checkboxes[i]
|
102 |
+
elif i == 13:
|
103 |
+
checkboxes_vector[cchoices.index('Smiling')] = checkboxes[i]
|
104 |
+
elif i == 14:
|
105 |
+
checkboxes_vector[cchoices.index('Wearing Hat')] = checkboxes[i] * 2
|
106 |
+
|
107 |
+
|
108 |
+
is_young = checkboxes[5]
|
109 |
+
is_male = checkboxes[6]
|
110 |
+
is_bald = checkboxes[0]
|
111 |
+
is_goatee = checkboxes[7]
|
112 |
+
is_mustache = checkboxes[8]
|
113 |
+
|
114 |
+
checkboxes_vector[12] = is_mustache * 2
|
115 |
+
checkboxes_vector[13] = is_mustache * 2
|
116 |
+
checkboxes_vector[14] = is_goatee *2
|
117 |
+
checkboxes_vector[15] = is_goatee*2
|
118 |
+
|
119 |
+
checkboxes_vector[16] = is_bald
|
120 |
+
checkboxes_vector[17] = is_bald
|
121 |
+
checkboxes_vector[18] = is_bald
|
122 |
+
checkboxes_vector[19] = is_bald
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
print(checkboxes_vector)
|
127 |
+
|
128 |
+
m = checkboxes_vector.view(1, 20)
|
129 |
+
ws = G.mapping(z, m, truncation_psi=0.5)
|
130 |
+
img = (G.synthesis(ws, force_fp32=True).clip(-1,1)+1)/2
|
131 |
+
if upscale:
|
132 |
+
up_img = np.array(super_res(img*2-1, upscale_steps))
|
133 |
+
return up_img
|
134 |
+
else:
|
135 |
+
return img[0].permute(1, 2, 0).numpy()
|
136 |
+
|
137 |
+
|
138 |
+
# Create the interface using gr.Blocks
|
139 |
+
with gr.Blocks() as demo:
|
140 |
+
with gr.Row():
|
141 |
+
sliders = [
|
142 |
+
gr.Slider(label='Bald', minimum=0, maximum=1, step=0.01),
|
143 |
+
gr.Slider(label='Black Hair', minimum=0, maximum=1, step=0.01),
|
144 |
+
gr.Slider(label='Blond Hair', minimum=0, maximum=1, step=0.01),
|
145 |
+
gr.Slider(label='Straight Hair', minimum=0, maximum=1, step=0.01),
|
146 |
+
gr.Slider(label='Wavy Hair', minimum=0, maximum=1, step=0.01),
|
147 |
+
]
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
sliders += [gr.Slider(label='Young', minimum=0, maximum=1, step=0.01)]
|
151 |
+
sliders += [gr.Slider(label='Male', minimum=0, maximum=1, step=0.01)]
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
sliders += [gr.Slider(label='Goatee', minimum=0, maximum=1, step=0.01)]
|
155 |
+
sliders += [gr.Slider(label='Mustache', minimum=0, maximum=1, step=0.01)]
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
sliders += [
|
159 |
+
gr.Slider(label='Big Nose', minimum=0, maximum=1, step=0.01),
|
160 |
+
gr.Slider(label='Chubby', minimum=0, maximum=1, step=0.01),
|
161 |
+
gr.Slider(label='Eyeglasses', minimum=0, maximum=1, step=0.01),
|
162 |
+
gr.Slider(label='Pale Skin', minimum=0, maximum=1, step=0.01),
|
163 |
+
gr.Slider(label='Smiling', minimum=0, maximum=1, step=0.01),
|
164 |
+
gr.Slider(label='Wearing Hat', minimum=0, maximum=1, step=0.01),
|
165 |
+
]
|
166 |
+
|
167 |
+
seed_input = gr.Number(label="Seed", value=6)
|
168 |
+
upscale_funcs = []
|
169 |
+
with gr.Row():
|
170 |
+
upscale_funcs = [gr.Checkbox(label="Upscale 4x")]
|
171 |
+
upscale_funcs += [gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=10)]
|
172 |
+
generate_button = gr.Button("Generate")
|
173 |
+
|
174 |
+
output_image = gr.Image(label="Generated Image")
|
175 |
+
|
176 |
+
# Set the action for the button
|
177 |
+
generate_button.click(fn=generate, inputs=[seed_input] + upscale_funcs +sliders, outputs=output_image)
|
178 |
+
|
179 |
+
# Launch the demo
|
180 |
+
demo.launch()
|