Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
shaoan xie
commited on
Commit
·
bc2c9f6
1
Parent(s):
5712a01
Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- dnnlib/__init__.py +9 -0
- dnnlib/__pycache__/__init__.cpython-311.pyc +0 -0
- dnnlib/__pycache__/__init__.cpython-38.pyc +0 -0
- dnnlib/__pycache__/__init__.cpython-39.pyc +0 -0
- dnnlib/__pycache__/util.cpython-311.pyc +0 -0
- dnnlib/__pycache__/util.cpython-38.pyc +0 -0
- dnnlib/__pycache__/util.cpython-39.pyc +0 -0
- dnnlib/util.py +557 -0
- flagged/log.csv +2 -0
- main.py +169 -0
- torch_utils/__init__.py +9 -0
- torch_utils/__pycache__/__init__.cpython-311.pyc +0 -0
- torch_utils/__pycache__/__init__.cpython-38.pyc +0 -0
- torch_utils/__pycache__/__init__.cpython-39.pyc +0 -0
- torch_utils/__pycache__/custom_ops.cpython-311.pyc +0 -0
- torch_utils/__pycache__/custom_ops.cpython-38.pyc +0 -0
- torch_utils/__pycache__/custom_ops.cpython-39.pyc +0 -0
- torch_utils/__pycache__/misc.cpython-311.pyc +0 -0
- torch_utils/__pycache__/misc.cpython-38.pyc +0 -0
- torch_utils/__pycache__/misc.cpython-39.pyc +0 -0
- torch_utils/__pycache__/persistence.cpython-311.pyc +0 -0
- torch_utils/__pycache__/persistence.cpython-38.pyc +0 -0
- torch_utils/__pycache__/persistence.cpython-39.pyc +0 -0
- torch_utils/__pycache__/training_stats.cpython-38.pyc +0 -0
- torch_utils/__pycache__/training_stats.cpython-39.pyc +0 -0
- torch_utils/custom_ops.py +126 -0
- torch_utils/misc.py +262 -0
- torch_utils/ops/__init__.py +9 -0
- torch_utils/ops/__pycache__/__init__.cpython-311.pyc +0 -0
- torch_utils/ops/__pycache__/__init__.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/__init__.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/bias_act.cpython-311.pyc +0 -0
- torch_utils/ops/__pycache__/bias_act.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/bias_act.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_gradfix.cpython-311.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_gradfix.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_gradfix.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_resample.cpython-311.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_resample.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/conv2d_resample.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/fma.cpython-311.pyc +0 -0
- torch_utils/ops/__pycache__/fma.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/fma.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-311.pyc +0 -0
- torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-39.pyc +0 -0
- torch_utils/ops/__pycache__/upfirdn2d.cpython-311.pyc +0 -0
- torch_utils/ops/__pycache__/upfirdn2d.cpython-38.pyc +0 -0
- torch_utils/ops/__pycache__/upfirdn2d.cpython-39.pyc +0 -0
- torch_utils/ops/bias_act.cpp +99 -0
dnnlib/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from .util import EasyDict, make_cache_dir_path
|
dnnlib/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (263 Bytes). View file
|
|
dnnlib/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (223 Bytes). View file
|
|
dnnlib/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (223 Bytes). View file
|
|
dnnlib/__pycache__/util.cpython-311.pyc
ADDED
Binary file (30.9 kB). View file
|
|
dnnlib/__pycache__/util.cpython-38.pyc
ADDED
Binary file (16.7 kB). View file
|
|
dnnlib/__pycache__/util.cpython-39.pyc
ADDED
Binary file (16.6 kB). View file
|
|
dnnlib/util.py
ADDED
@@ -0,0 +1,557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Miscellaneous utility classes and functions."""
|
10 |
+
|
11 |
+
import ctypes
|
12 |
+
import fnmatch
|
13 |
+
import importlib
|
14 |
+
import inspect
|
15 |
+
import numpy as np
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
import sys
|
19 |
+
import types
|
20 |
+
import io
|
21 |
+
import pickle
|
22 |
+
import re
|
23 |
+
import requests
|
24 |
+
import html
|
25 |
+
import hashlib
|
26 |
+
import glob
|
27 |
+
import tempfile
|
28 |
+
import urllib
|
29 |
+
import urllib.request
|
30 |
+
import uuid
|
31 |
+
|
32 |
+
from distutils.util import strtobool
|
33 |
+
from typing import Any, List, Tuple, Union
|
34 |
+
|
35 |
+
|
36 |
+
# Util classes
|
37 |
+
# ------------------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
|
40 |
+
class EasyDict(dict):
|
41 |
+
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
|
42 |
+
|
43 |
+
def __getattr__(self, name: str) -> Any:
|
44 |
+
try:
|
45 |
+
return self[name]
|
46 |
+
except KeyError:
|
47 |
+
raise AttributeError(name)
|
48 |
+
|
49 |
+
def __setattr__(self, name: str, value: Any) -> None:
|
50 |
+
self[name] = value
|
51 |
+
|
52 |
+
def __delattr__(self, name: str) -> None:
|
53 |
+
del self[name]
|
54 |
+
|
55 |
+
|
56 |
+
class Logger(object):
|
57 |
+
"""Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
|
58 |
+
|
59 |
+
def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
|
60 |
+
self.file = None
|
61 |
+
|
62 |
+
if file_name is not None:
|
63 |
+
self.file = open(file_name, file_mode)
|
64 |
+
|
65 |
+
self.should_flush = should_flush
|
66 |
+
self.stdout = sys.stdout
|
67 |
+
self.stderr = sys.stderr
|
68 |
+
|
69 |
+
sys.stdout = self
|
70 |
+
sys.stderr = self
|
71 |
+
|
72 |
+
def __enter__(self) -> "Logger":
|
73 |
+
return self
|
74 |
+
|
75 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
76 |
+
self.close()
|
77 |
+
|
78 |
+
def write(self, text: Union[str, bytes]) -> None:
|
79 |
+
"""Write text to stdout (and a file) and optionally flush."""
|
80 |
+
if isinstance(text, bytes):
|
81 |
+
text = text.decode()
|
82 |
+
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
|
83 |
+
return
|
84 |
+
|
85 |
+
if self.file is not None:
|
86 |
+
self.file.write(text)
|
87 |
+
|
88 |
+
self.stdout.write(text)
|
89 |
+
|
90 |
+
if self.should_flush:
|
91 |
+
self.flush()
|
92 |
+
|
93 |
+
def flush(self) -> None:
|
94 |
+
"""Flush written text to both stdout and a file, if open."""
|
95 |
+
if self.file is not None:
|
96 |
+
self.file.flush()
|
97 |
+
|
98 |
+
self.stdout.flush()
|
99 |
+
|
100 |
+
def close(self) -> None:
|
101 |
+
"""Flush, close possible files, and remove stdout/stderr mirroring."""
|
102 |
+
self.flush()
|
103 |
+
|
104 |
+
# if using multiple loggers, prevent closing in wrong order
|
105 |
+
if sys.stdout is self:
|
106 |
+
sys.stdout = self.stdout
|
107 |
+
if sys.stderr is self:
|
108 |
+
sys.stderr = self.stderr
|
109 |
+
|
110 |
+
if self.file is not None:
|
111 |
+
self.file.close()
|
112 |
+
self.file = None
|
113 |
+
|
114 |
+
|
115 |
+
# Cache directories
|
116 |
+
# ------------------------------------------------------------------------------------------
|
117 |
+
|
118 |
+
_dnnlib_cache_dir = None
|
119 |
+
|
120 |
+
def set_cache_dir(path: str) -> None:
|
121 |
+
global _dnnlib_cache_dir
|
122 |
+
_dnnlib_cache_dir = path
|
123 |
+
|
124 |
+
def make_cache_dir_path(*paths: str) -> str:
|
125 |
+
if _dnnlib_cache_dir is not None:
|
126 |
+
return os.path.join(_dnnlib_cache_dir, *paths)
|
127 |
+
if 'DNNLIB_CACHE_DIR' in os.environ:
|
128 |
+
return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
|
129 |
+
if 'HOME' in os.environ:
|
130 |
+
return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
|
131 |
+
if 'USERPROFILE' in os.environ:
|
132 |
+
return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
|
133 |
+
return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
|
134 |
+
|
135 |
+
# Small util functions
|
136 |
+
# ------------------------------------------------------------------------------------------
|
137 |
+
|
138 |
+
|
139 |
+
def format_time(seconds: Union[int, float]) -> str:
|
140 |
+
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
|
141 |
+
s = int(np.rint(seconds))
|
142 |
+
|
143 |
+
if s < 60:
|
144 |
+
return "{0}s".format(s)
|
145 |
+
elif s < 60 * 60:
|
146 |
+
return "{0}m {1:02}s".format(s // 60, s % 60)
|
147 |
+
elif s < 24 * 60 * 60:
|
148 |
+
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
|
149 |
+
else:
|
150 |
+
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
|
151 |
+
|
152 |
+
|
153 |
+
def ask_yes_no(question: str) -> bool:
|
154 |
+
"""Ask the user the question until the user inputs a valid answer."""
|
155 |
+
while True:
|
156 |
+
try:
|
157 |
+
print("{0} [y/n]".format(question))
|
158 |
+
return strtobool(input().lower())
|
159 |
+
except ValueError:
|
160 |
+
pass
|
161 |
+
|
162 |
+
|
163 |
+
def tuple_product(t: Tuple) -> Any:
|
164 |
+
"""Calculate the product of the tuple elements."""
|
165 |
+
result = 1
|
166 |
+
|
167 |
+
for v in t:
|
168 |
+
result *= v
|
169 |
+
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
_str_to_ctype = {
|
174 |
+
"uint8": ctypes.c_ubyte,
|
175 |
+
"uint16": ctypes.c_uint16,
|
176 |
+
"uint32": ctypes.c_uint32,
|
177 |
+
"uint64": ctypes.c_uint64,
|
178 |
+
"int8": ctypes.c_byte,
|
179 |
+
"int16": ctypes.c_int16,
|
180 |
+
"int32": ctypes.c_int32,
|
181 |
+
"int64": ctypes.c_int64,
|
182 |
+
"float32": ctypes.c_float,
|
183 |
+
"float64": ctypes.c_double
|
184 |
+
}
|
185 |
+
|
186 |
+
|
187 |
+
def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
|
188 |
+
"""Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
|
189 |
+
type_str = None
|
190 |
+
|
191 |
+
if isinstance(type_obj, str):
|
192 |
+
type_str = type_obj
|
193 |
+
elif hasattr(type_obj, "__name__"):
|
194 |
+
type_str = type_obj.__name__
|
195 |
+
elif hasattr(type_obj, "name"):
|
196 |
+
type_str = type_obj.name
|
197 |
+
else:
|
198 |
+
raise RuntimeError("Cannot infer type name from input")
|
199 |
+
|
200 |
+
assert type_str in _str_to_ctype.keys()
|
201 |
+
|
202 |
+
my_dtype = np.dtype(type_str)
|
203 |
+
my_ctype = _str_to_ctype[type_str]
|
204 |
+
|
205 |
+
assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
|
206 |
+
|
207 |
+
return my_dtype, my_ctype
|
208 |
+
|
209 |
+
|
210 |
+
def is_pickleable(obj: Any) -> bool:
|
211 |
+
try:
|
212 |
+
with io.BytesIO() as stream:
|
213 |
+
pickle.dump(obj, stream)
|
214 |
+
return True
|
215 |
+
except:
|
216 |
+
return False
|
217 |
+
|
218 |
+
|
219 |
+
# Functionality to import modules/objects by name, and call functions by name
|
220 |
+
# ------------------------------------------------------------------------------------------
|
221 |
+
|
222 |
+
def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
|
223 |
+
"""Searches for the underlying module behind the name to some python object.
|
224 |
+
Returns the module and the object name (original name with module part removed)."""
|
225 |
+
|
226 |
+
# allow convenience shorthands, substitute them by full names
|
227 |
+
obj_name = re.sub("^np.", "numpy.", obj_name)
|
228 |
+
obj_name = re.sub("^tf.", "tensorflow.", obj_name)
|
229 |
+
|
230 |
+
# list alternatives for (module_name, local_obj_name)
|
231 |
+
parts = obj_name.split(".")
|
232 |
+
name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
|
233 |
+
|
234 |
+
# try each alternative in turn
|
235 |
+
for module_name, local_obj_name in name_pairs:
|
236 |
+
try:
|
237 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
238 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
239 |
+
return module, local_obj_name
|
240 |
+
except:
|
241 |
+
pass
|
242 |
+
|
243 |
+
# maybe some of the modules themselves contain errors?
|
244 |
+
for module_name, _local_obj_name in name_pairs:
|
245 |
+
try:
|
246 |
+
importlib.import_module(module_name) # may raise ImportError
|
247 |
+
except ImportError:
|
248 |
+
if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
|
249 |
+
raise
|
250 |
+
|
251 |
+
# maybe the requested attribute is missing?
|
252 |
+
for module_name, local_obj_name in name_pairs:
|
253 |
+
try:
|
254 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
255 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
256 |
+
except ImportError:
|
257 |
+
pass
|
258 |
+
|
259 |
+
# we are out of luck, but we have no idea why
|
260 |
+
raise ImportError(obj_name)
|
261 |
+
|
262 |
+
|
263 |
+
def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
|
264 |
+
"""Traverses the object name and returns the last (rightmost) python object."""
|
265 |
+
if obj_name == '':
|
266 |
+
return module
|
267 |
+
obj = module
|
268 |
+
for part in obj_name.split("."):
|
269 |
+
obj = getattr(obj, part)
|
270 |
+
return obj
|
271 |
+
|
272 |
+
|
273 |
+
def get_obj_by_name(name: str) -> Any:
|
274 |
+
"""Finds the python object with the given name."""
|
275 |
+
module, obj_name = get_module_from_obj_name(name)
|
276 |
+
return get_obj_from_module(module, obj_name)
|
277 |
+
|
278 |
+
|
279 |
+
def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
|
280 |
+
"""Finds the python object with the given name and calls it as a function."""
|
281 |
+
assert func_name is not None
|
282 |
+
func_obj = get_obj_by_name(func_name)
|
283 |
+
assert callable(func_obj)
|
284 |
+
return func_obj(*args, **kwargs)
|
285 |
+
|
286 |
+
|
287 |
+
def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
|
288 |
+
"""Finds the python class with the given name and constructs it with the given arguments."""
|
289 |
+
return call_func_by_name(*args, func_name=class_name, **kwargs)
|
290 |
+
|
291 |
+
|
292 |
+
def get_module_dir_by_obj_name(obj_name: str) -> str:
|
293 |
+
"""Get the directory path of the module containing the given object name."""
|
294 |
+
module, _ = get_module_from_obj_name(obj_name)
|
295 |
+
return os.path.dirname(inspect.getfile(module))
|
296 |
+
|
297 |
+
|
298 |
+
def is_top_level_function(obj: Any) -> bool:
|
299 |
+
"""Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
|
300 |
+
return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
|
301 |
+
|
302 |
+
|
303 |
+
def get_top_level_function_name(obj: Any) -> str:
|
304 |
+
"""Return the fully-qualified name of a top-level function."""
|
305 |
+
assert is_top_level_function(obj)
|
306 |
+
module = obj.__module__
|
307 |
+
if module == '__main__':
|
308 |
+
module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
|
309 |
+
return module + "." + obj.__name__
|
310 |
+
|
311 |
+
|
312 |
+
# File system helpers
|
313 |
+
# ------------------------------------------------------------------------------------------
|
314 |
+
|
315 |
+
def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
|
316 |
+
"""List all files recursively in a given directory while ignoring given file and directory names.
|
317 |
+
Returns list of tuples containing both absolute and relative paths."""
|
318 |
+
assert os.path.isdir(dir_path)
|
319 |
+
base_name = os.path.basename(os.path.normpath(dir_path))
|
320 |
+
|
321 |
+
if ignores is None:
|
322 |
+
ignores = []
|
323 |
+
|
324 |
+
result = []
|
325 |
+
|
326 |
+
for root, dirs, files in os.walk(dir_path, topdown=True):
|
327 |
+
for ignore_ in ignores:
|
328 |
+
dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
|
329 |
+
|
330 |
+
# dirs need to be edited in-place
|
331 |
+
for d in dirs_to_remove:
|
332 |
+
dirs.remove(d)
|
333 |
+
|
334 |
+
files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
|
335 |
+
|
336 |
+
absolute_paths = [os.path.join(root, f) for f in files]
|
337 |
+
relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
|
338 |
+
|
339 |
+
if add_base_to_relative:
|
340 |
+
relative_paths = [os.path.join(base_name, p) for p in relative_paths]
|
341 |
+
|
342 |
+
assert len(absolute_paths) == len(relative_paths)
|
343 |
+
result += zip(absolute_paths, relative_paths)
|
344 |
+
|
345 |
+
return result
|
346 |
+
|
347 |
+
|
348 |
+
def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
|
349 |
+
"""Takes in a list of tuples of (src, dst) paths and copies files.
|
350 |
+
Will create all necessary directories."""
|
351 |
+
for file in files:
|
352 |
+
target_dir_name = os.path.dirname(file[1])
|
353 |
+
|
354 |
+
# will create all intermediate-level directories
|
355 |
+
if not os.path.exists(target_dir_name):
|
356 |
+
os.makedirs(target_dir_name)
|
357 |
+
|
358 |
+
shutil.copyfile(file[0], file[1])
|
359 |
+
|
360 |
+
|
361 |
+
# URL helpers
|
362 |
+
# ------------------------------------------------------------------------------------------
|
363 |
+
|
364 |
+
def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
|
365 |
+
"""Determine whether the given object is a valid URL string."""
|
366 |
+
if not isinstance(obj, str) or not "://" in obj:
|
367 |
+
return False
|
368 |
+
if allow_file_urls and obj.startswith('file://'):
|
369 |
+
return True
|
370 |
+
try:
|
371 |
+
res = requests.compat.urlparse(obj)
|
372 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
373 |
+
return False
|
374 |
+
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
|
375 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
376 |
+
return False
|
377 |
+
except:
|
378 |
+
return False
|
379 |
+
return True
|
380 |
+
|
381 |
+
|
382 |
+
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
|
383 |
+
"""Download the given URL and return a binary-mode file object to access the data."""
|
384 |
+
assert num_attempts >= 1
|
385 |
+
assert not (return_filename and (not cache))
|
386 |
+
|
387 |
+
# Doesn't look like an URL scheme so interpret it as a local filename.
|
388 |
+
if not re.match('^[a-z]+://', url):
|
389 |
+
return url if return_filename else open(url, "rb")
|
390 |
+
|
391 |
+
# Handle file URLs. This code handles unusual file:// patterns that
|
392 |
+
# arise on Windows:
|
393 |
+
#
|
394 |
+
# file:///c:/foo.txt
|
395 |
+
#
|
396 |
+
# which would translate to a local '/c:/foo.txt' filename that's
|
397 |
+
# invalid. Drop the forward slash for such pathnames.
|
398 |
+
#
|
399 |
+
# If you touch this code path, you should test it on both Linux and
|
400 |
+
# Windows.
|
401 |
+
#
|
402 |
+
# Some internet resources suggest using urllib.request.url2pathname() but
|
403 |
+
# but that converts forward slashes to backslashes and this causes
|
404 |
+
# its own set of problems.
|
405 |
+
if url.startswith('file://'):
|
406 |
+
filename = urllib.parse.urlparse(url).path
|
407 |
+
if re.match(r'^/[a-zA-Z]:', filename):
|
408 |
+
filename = filename[1:]
|
409 |
+
return filename if return_filename else open(filename, "rb")
|
410 |
+
|
411 |
+
assert is_url(url)
|
412 |
+
|
413 |
+
# Lookup from cache.
|
414 |
+
if cache_dir is None:
|
415 |
+
cache_dir = make_cache_dir_path('downloads')
|
416 |
+
|
417 |
+
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
418 |
+
if cache:
|
419 |
+
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
|
420 |
+
if len(cache_files) == 1:
|
421 |
+
filename = cache_files[0]
|
422 |
+
return filename if return_filename else open(filename, "rb")
|
423 |
+
|
424 |
+
# Download.
|
425 |
+
url_name = None
|
426 |
+
url_data = None
|
427 |
+
with requests.Session() as session:
|
428 |
+
if verbose:
|
429 |
+
print("Downloading %s ..." % url, end="", flush=True)
|
430 |
+
for attempts_left in reversed(range(num_attempts)):
|
431 |
+
try:
|
432 |
+
with session.get(url) as res:
|
433 |
+
res.raise_for_status()
|
434 |
+
if len(res.content) == 0:
|
435 |
+
raise IOError("No data received")
|
436 |
+
|
437 |
+
if len(res.content) < 8192:
|
438 |
+
content_str = res.content.decode("utf-8")
|
439 |
+
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
440 |
+
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
441 |
+
if len(links) == 1:
|
442 |
+
url = requests.compat.urljoin(url, links[0])
|
443 |
+
raise IOError("Google Drive virus checker nag")
|
444 |
+
if "Google Drive - Quota exceeded" in content_str:
|
445 |
+
raise IOError("Google Drive download quota exceeded -- please try again later")
|
446 |
+
|
447 |
+
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
448 |
+
url_name = match[1] if match else url
|
449 |
+
url_data = res.content
|
450 |
+
if verbose:
|
451 |
+
print(" done")
|
452 |
+
break
|
453 |
+
except KeyboardInterrupt:
|
454 |
+
raise
|
455 |
+
except:
|
456 |
+
if not attempts_left:
|
457 |
+
if verbose:
|
458 |
+
print(" failed")
|
459 |
+
raise
|
460 |
+
if verbose:
|
461 |
+
print(".", end="", flush=True)
|
462 |
+
|
463 |
+
# Save to cache.
|
464 |
+
if cache:
|
465 |
+
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
|
466 |
+
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
|
467 |
+
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
|
468 |
+
os.makedirs(cache_dir, exist_ok=True)
|
469 |
+
with open(temp_file, "wb") as f:
|
470 |
+
f.write(url_data)
|
471 |
+
os.replace(temp_file, cache_file) # atomic
|
472 |
+
if return_filename:
|
473 |
+
return cache_file
|
474 |
+
|
475 |
+
# Return data as file object.
|
476 |
+
assert not return_filename
|
477 |
+
return io.BytesIO(url_data)
|
478 |
+
|
479 |
+
from fnmatch import fnmatch
|
480 |
+
import shutil
|
481 |
+
import hashlib
|
482 |
+
watched_rules = ['*.py', '*.sh', '*.yaml', '*.yml']
|
483 |
+
exclude_rules = ['results', 'datasets', 'checkpoints', 'samples', 'outputs',
|
484 |
+
'training-runs', 'expr', 'uda-runs', 'old_training-runs', 'old-uda-runs']
|
485 |
+
def calculate_checksum(filenames):
|
486 |
+
hash = hashlib.md5()
|
487 |
+
for fn in filenames:
|
488 |
+
if os.path.isfile(fn):
|
489 |
+
hash.update(open(fn, "rb").read())
|
490 |
+
return hash.hexdigest()
|
491 |
+
|
492 |
+
def copy_src_files(files, target_dir):
|
493 |
+
"""Takes in a list of tuples of (src, dst) paths and copies files.
|
494 |
+
Will create all necessary directories."""
|
495 |
+
if len(files) >= 500:
|
496 |
+
print('Warning! there are %d files to be copied!' %(len(files)))
|
497 |
+
raise ValueError('Too many files to copy!')
|
498 |
+
for file in files:
|
499 |
+
target_name = os.path.join(target_dir, file)
|
500 |
+
dir_name = os.path.dirname(target_name)
|
501 |
+
if not os.path.exists(dir_name):
|
502 |
+
os.makedirs(dir_name)
|
503 |
+
# will create all intermediate-level directories
|
504 |
+
shutil.copyfile(file, target_name)
|
505 |
+
|
506 |
+
|
507 |
+
def _get_watched_files(work_dir):
|
508 |
+
rules = watched_rules
|
509 |
+
watched_files = []
|
510 |
+
to_match = []
|
511 |
+
for rule in rules:
|
512 |
+
t = rule.count('*')
|
513 |
+
if t == 0:
|
514 |
+
watched_files.append(rule)
|
515 |
+
elif t == 1:
|
516 |
+
to_match.append(rule)
|
517 |
+
|
518 |
+
for parent, dirs, file_names in os.walk(work_dir):
|
519 |
+
for ignore_ in exclude_rules:
|
520 |
+
dirs_to_remove = [d for d in dirs if fnmatch(d, ignore_)]
|
521 |
+
|
522 |
+
# dirs need to be edited in-place
|
523 |
+
for d in dirs_to_remove:
|
524 |
+
dirs.remove(d)
|
525 |
+
|
526 |
+
file_names = [f for f in file_names if not fnmatch(f, ignore_)]
|
527 |
+
|
528 |
+
for file_name in file_names:
|
529 |
+
for each in to_match:
|
530 |
+
if fnmatch(file_name, each):
|
531 |
+
watched_files.append(os.path.join(parent, file_name))
|
532 |
+
break
|
533 |
+
return watched_files
|
534 |
+
|
535 |
+
def prepare_sub_directories(run_dir):
|
536 |
+
|
537 |
+
src_dir = os.path.join(run_dir, 'src')
|
538 |
+
files = _get_watched_files('.')
|
539 |
+
copy_src_files(files, src_dir)
|
540 |
+
|
541 |
+
img_dir = os.path.join(run_dir, 'img')
|
542 |
+
if not os.path.exists(img_dir):
|
543 |
+
os.makedirs(img_dir)
|
544 |
+
|
545 |
+
|
546 |
+
import torch
|
547 |
+
import torchvision.utils as vutils
|
548 |
+
def __write_images(image_outputs, display_image_num, file_name):
|
549 |
+
image_outputs = [torch.cat(images, 0) for images in image_outputs]
|
550 |
+
image_outputs = [images.expand(-1, 3, -1, -1) for images in image_outputs] # expand gray-scale images to 3 channels
|
551 |
+
image_tensor = torch.cat([images[:display_image_num] for images in image_outputs], 0)
|
552 |
+
image_grid = vutils.make_grid(image_tensor.data, nrow=display_image_num, padding=0, normalize=True)
|
553 |
+
vutils.save_image(image_grid, file_name, nrow=1)
|
554 |
+
|
555 |
+
|
556 |
+
def write_images(image_outputs, display_image_num, image_directory, postfix):
|
557 |
+
__write_images(image_outputs, display_image_num, '%s/gen_%s.jpg' % (image_directory, postfix))
|
flagged/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Seed,Bald,Big Nose,Black Hair,Blond Hair,Chubby,Eyeglasses,Goatee,Male,Mustache,Pale Skin,Smiling,Straight Hair,Wavy Hair,Wearing Hat,Young,output,flag,username,timestamp
|
2 |
+
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,,,2024-09-12 11:12:52.113007
|
main.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import pickle
|
4 |
+
from torchvision.utils import save_image
|
5 |
+
import numpy as np
|
6 |
+
from diffusers import StableDiffusionUpscalePipeline
|
7 |
+
with open('../concept_checkpoints/augceleba_4838.pkl', 'rb') as f:
|
8 |
+
G = pickle.load(f)['G_ema'].cpu().float() # torch.nn.Module
|
9 |
+
|
10 |
+
|
11 |
+
cchoices = ['Bald',
|
12 |
+
'Black Hair',
|
13 |
+
'Blond Hair',
|
14 |
+
'Smiling',
|
15 |
+
'NoSmile',
|
16 |
+
'Male',
|
17 |
+
'Female'
|
18 |
+
]
|
19 |
+
|
20 |
+
model_choices = [
|
21 |
+
'Change Dim = 8',
|
22 |
+
'Change Dim = 15',
|
23 |
+
'Change Dim = 30',
|
24 |
+
'Change Dim = 60'
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
cchoices = [
|
29 |
+
'Big Nose',
|
30 |
+
'Black Hair',
|
31 |
+
'Blond Hair',
|
32 |
+
'Chubby',
|
33 |
+
'Eyeglasses',
|
34 |
+
'Male',
|
35 |
+
'Pale Skin',
|
36 |
+
'Smiling',
|
37 |
+
'Straight Hair',
|
38 |
+
'Wavy Hair',
|
39 |
+
'Wearing Hat',
|
40 |
+
'Young'
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
import requests
|
45 |
+
from PIL import Image
|
46 |
+
from io import BytesIO
|
47 |
+
from diffusers import LDMSuperResolutionPipeline
|
48 |
+
import torch
|
49 |
+
|
50 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
+
model_id = "CompVis/ldm-super-resolution-4x-openimages"
|
52 |
+
|
53 |
+
# load model and scheduler
|
54 |
+
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
|
55 |
+
pipeline = pipeline.to(device)
|
56 |
+
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
57 |
+
pipeline = StableDiffusionUpscalePipeline.from_pretrained(
|
58 |
+
model_id, variant="fp32", torch_dtype=torch.float32
|
59 |
+
)
|
60 |
+
# let's download an image
|
61 |
+
|
62 |
+
|
63 |
+
def super_res(low_res_img):
|
64 |
+
# run pipeline in inference (sample random noise and denoise)
|
65 |
+
#upscaled_image = pipeline(low_res_img, num_inference_steps=10, eta=1).images[0]
|
66 |
+
upscaled_image = pipeline(prompt="a sharp image of human face", image=low_res_img, num_inference_steps=10).images[0]
|
67 |
+
return upscaled_image
|
68 |
+
|
69 |
+
|
70 |
+
@torch.no_grad()
|
71 |
+
def generate(seed, *checkboxes):
|
72 |
+
z = torch.randn([1, G.z_dim], generator=torch.Generator().manual_seed(seed))
|
73 |
+
#m = torch.tensor([[1, 0, 0, 0, 1, 1, 0.]]).repeat(1, 1)
|
74 |
+
checkboxes_vector = torch.zeros([20])
|
75 |
+
for i in range(len(checkboxes)):
|
76 |
+
if i == 1:
|
77 |
+
checkboxes_vector[cchoices.index('Black Hair')] = checkboxes[i]
|
78 |
+
elif i == 2:
|
79 |
+
checkboxes_vector[cchoices.index('Blond Hair')] = checkboxes[i]
|
80 |
+
elif i == 3:
|
81 |
+
checkboxes_vector[cchoices.index('Straight Hair')] = checkboxes[i]
|
82 |
+
elif i == 4:
|
83 |
+
checkboxes_vector[cchoices.index('Wavy Hair')] = checkboxes[i]
|
84 |
+
elif i == 5:
|
85 |
+
checkboxes_vector[cchoices.index('Young')] = checkboxes[i]
|
86 |
+
elif i == 6:
|
87 |
+
checkboxes_vector[cchoices.index('Male')] = checkboxes[i]
|
88 |
+
elif i == 9:
|
89 |
+
checkboxes_vector[cchoices.index('Big Nose')] = checkboxes[i]
|
90 |
+
elif i == 10:
|
91 |
+
checkboxes_vector[cchoices.index('Chubby')] = checkboxes[i]
|
92 |
+
elif i == 11:
|
93 |
+
checkboxes_vector[cchoices.index('Eyeglasses')] = checkboxes[i]
|
94 |
+
elif i == 12:
|
95 |
+
checkboxes_vector[cchoices.index('Pale Skin')] = checkboxes[i]
|
96 |
+
elif i == 13:
|
97 |
+
checkboxes_vector[cchoices.index('Smiling')] = checkboxes[i]
|
98 |
+
elif i == 14:
|
99 |
+
checkboxes_vector[cchoices.index('Wearing Hat')] = checkboxes[i] * 1.5
|
100 |
+
|
101 |
+
|
102 |
+
is_young = checkboxes[5]
|
103 |
+
is_male = checkboxes[6]
|
104 |
+
is_bald = checkboxes[0]
|
105 |
+
is_goatee = checkboxes[7]
|
106 |
+
is_mustache = checkboxes[8]
|
107 |
+
|
108 |
+
checkboxes_vector[12] = is_mustache * 1.5
|
109 |
+
checkboxes_vector[13] = is_mustache * 1.5
|
110 |
+
checkboxes_vector[14] = is_goatee *1.5
|
111 |
+
checkboxes_vector[15] = is_goatee*1.5
|
112 |
+
|
113 |
+
checkboxes_vector[16] = is_bald
|
114 |
+
checkboxes_vector[17] = is_bald
|
115 |
+
checkboxes_vector[18] = is_bald
|
116 |
+
checkboxes_vector[19] = is_bald
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
print(checkboxes_vector)
|
121 |
+
|
122 |
+
m = checkboxes_vector.view(1, 20)
|
123 |
+
ws = G.mapping(z, m, truncation_psi=0.5)
|
124 |
+
img = (G.synthesis(ws, force_fp32=True).clip(-1,1)+1)/2
|
125 |
+
up_img = np.array(super_res(img))
|
126 |
+
print(img.min(), img.max(), up_img.min(), up_img.max(), ' >>>>>>image sis zee')
|
127 |
+
#return img[0].permute(1, 2, 0).numpy()
|
128 |
+
return up_img
|
129 |
+
|
130 |
+
|
131 |
+
# Create the interface using gr.Blocks
|
132 |
+
with gr.Blocks() as demo:
|
133 |
+
with gr.Row():
|
134 |
+
sliders = [
|
135 |
+
gr.Slider(label='Bald', minimum=0, maximum=1, step=0.01),
|
136 |
+
gr.Slider(label='Black Hair', minimum=0, maximum=1, step=0.01),
|
137 |
+
gr.Slider(label='Blond Hair', minimum=0, maximum=1, step=0.01),
|
138 |
+
gr.Slider(label='Straight Hair', minimum=0, maximum=1, step=0.01),
|
139 |
+
gr.Slider(label='Wavy Hair', minimum=0, maximum=1, step=0.01),
|
140 |
+
]
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
sliders += [gr.Slider(label='Young', minimum=0, maximum=1, step=0.01)]
|
144 |
+
sliders += [gr.Slider(label='Male', minimum=0, maximum=1, step=0.01)]
|
145 |
+
|
146 |
+
with gr.Row():
|
147 |
+
sliders += [gr.Slider(label='Goatee', minimum=0, maximum=1, step=0.01)]
|
148 |
+
sliders += [gr.Slider(label='Mustache', minimum=0, maximum=1, step=0.01)]
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
sliders += [
|
152 |
+
gr.Slider(label='Big Nose', minimum=0, maximum=1, step=0.01),
|
153 |
+
gr.Slider(label='Chubby', minimum=0, maximum=1, step=0.01),
|
154 |
+
gr.Slider(label='Eyeglasses', minimum=0, maximum=1, step=0.01),
|
155 |
+
gr.Slider(label='Pale Skin', minimum=0, maximum=1, step=0.01),
|
156 |
+
gr.Slider(label='Smiling', minimum=0, maximum=1, step=0.01),
|
157 |
+
gr.Slider(label='Wearing Hat', minimum=0, maximum=1, step=0.01),
|
158 |
+
]
|
159 |
+
|
160 |
+
seed_input = gr.Number(label="Seed")
|
161 |
+
generate_button = gr.Button("Generate")
|
162 |
+
|
163 |
+
output_image = gr.Image(label="Generated Image")
|
164 |
+
|
165 |
+
# Set the action for the button
|
166 |
+
generate_button.click(fn=generate, inputs=[seed_input] + sliders, outputs=output_image)
|
167 |
+
|
168 |
+
# Launch the demo
|
169 |
+
demo.launch()
|
torch_utils/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
torch_utils/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (179 Bytes). View file
|
|
torch_utils/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (161 Bytes). View file
|
|
torch_utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (161 Bytes). View file
|
|
torch_utils/__pycache__/custom_ops.cpython-311.pyc
ADDED
Binary file (6.44 kB). View file
|
|
torch_utils/__pycache__/custom_ops.cpython-38.pyc
ADDED
Binary file (3.22 kB). View file
|
|
torch_utils/__pycache__/custom_ops.cpython-39.pyc
ADDED
Binary file (3.21 kB). View file
|
|
torch_utils/__pycache__/misc.cpython-311.pyc
ADDED
Binary file (20.1 kB). View file
|
|
torch_utils/__pycache__/misc.cpython-38.pyc
ADDED
Binary file (9.8 kB). View file
|
|
torch_utils/__pycache__/misc.cpython-39.pyc
ADDED
Binary file (9.75 kB). View file
|
|
torch_utils/__pycache__/persistence.cpython-311.pyc
ADDED
Binary file (10.9 kB). View file
|
|
torch_utils/__pycache__/persistence.cpython-38.pyc
ADDED
Binary file (8.61 kB). View file
|
|
torch_utils/__pycache__/persistence.cpython-39.pyc
ADDED
Binary file (8.58 kB). View file
|
|
torch_utils/__pycache__/training_stats.cpython-38.pyc
ADDED
Binary file (9.33 kB). View file
|
|
torch_utils/__pycache__/training_stats.cpython-39.pyc
ADDED
Binary file (9.3 kB). View file
|
|
torch_utils/custom_ops.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import os
|
10 |
+
import glob
|
11 |
+
import torch
|
12 |
+
import torch.utils.cpp_extension
|
13 |
+
import importlib
|
14 |
+
import hashlib
|
15 |
+
import shutil
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
from torch.utils.file_baton import FileBaton
|
19 |
+
|
20 |
+
#----------------------------------------------------------------------------
|
21 |
+
# Global options.
|
22 |
+
|
23 |
+
verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
|
24 |
+
|
25 |
+
#----------------------------------------------------------------------------
|
26 |
+
# Internal helper funcs.
|
27 |
+
|
28 |
+
def _find_compiler_bindir():
|
29 |
+
patterns = [
|
30 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
31 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
32 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
33 |
+
'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin',
|
34 |
+
]
|
35 |
+
for pattern in patterns:
|
36 |
+
matches = sorted(glob.glob(pattern))
|
37 |
+
if len(matches):
|
38 |
+
return matches[-1]
|
39 |
+
return None
|
40 |
+
|
41 |
+
#----------------------------------------------------------------------------
|
42 |
+
# Main entry point for compiling and loading C++/CUDA plugins.
|
43 |
+
|
44 |
+
_cached_plugins = dict()
|
45 |
+
|
46 |
+
def get_plugin(module_name, sources, **build_kwargs):
|
47 |
+
assert verbosity in ['none', 'brief', 'full']
|
48 |
+
|
49 |
+
# Already cached?
|
50 |
+
if module_name in _cached_plugins:
|
51 |
+
return _cached_plugins[module_name]
|
52 |
+
|
53 |
+
# Print status.
|
54 |
+
if verbosity == 'full':
|
55 |
+
print(f'Setting up PyTorch plugin "{module_name}"...')
|
56 |
+
elif verbosity == 'brief':
|
57 |
+
print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
|
58 |
+
|
59 |
+
try: # pylint: disable=too-many-nested-blocks
|
60 |
+
# Make sure we can find the necessary compiler binaries.
|
61 |
+
if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
|
62 |
+
compiler_bindir = _find_compiler_bindir()
|
63 |
+
if compiler_bindir is None:
|
64 |
+
raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
|
65 |
+
os.environ['PATH'] += ';' + compiler_bindir
|
66 |
+
|
67 |
+
# Compile and load.
|
68 |
+
verbose_build = (verbosity == 'full')
|
69 |
+
|
70 |
+
# Incremental build md5sum trickery. Copies all the input source files
|
71 |
+
# into a cached build directory under a combined md5 digest of the input
|
72 |
+
# source files. Copying is done only if the combined digest has changed.
|
73 |
+
# This keeps input file timestamps and filenames the same as in previous
|
74 |
+
# extension builds, allowing for fast incremental rebuilds.
|
75 |
+
#
|
76 |
+
# This optimization is done only in case all the source files reside in
|
77 |
+
# a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
|
78 |
+
# environment variable is set (we take this as a signal that the user
|
79 |
+
# actually cares about this.)
|
80 |
+
source_dirs_set = set(os.path.dirname(source) for source in sources)
|
81 |
+
if len(source_dirs_set) == 1 and ('TORCH_EXTENSIONS_DIR' in os.environ):
|
82 |
+
all_source_files = sorted(list(x for x in Path(list(source_dirs_set)[0]).iterdir() if x.is_file()))
|
83 |
+
|
84 |
+
# Compute a combined hash digest for all source files in the same
|
85 |
+
# custom op directory (usually .cu, .cpp, .py and .h files).
|
86 |
+
hash_md5 = hashlib.md5()
|
87 |
+
for src in all_source_files:
|
88 |
+
with open(src, 'rb') as f:
|
89 |
+
hash_md5.update(f.read())
|
90 |
+
build_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access
|
91 |
+
digest_build_dir = os.path.join(build_dir, hash_md5.hexdigest())
|
92 |
+
|
93 |
+
if not os.path.isdir(digest_build_dir):
|
94 |
+
os.makedirs(digest_build_dir, exist_ok=True)
|
95 |
+
baton = FileBaton(os.path.join(digest_build_dir, 'lock'))
|
96 |
+
if baton.try_acquire():
|
97 |
+
try:
|
98 |
+
for src in all_source_files:
|
99 |
+
shutil.copyfile(src, os.path.join(digest_build_dir, os.path.basename(src)))
|
100 |
+
finally:
|
101 |
+
baton.release()
|
102 |
+
else:
|
103 |
+
# Someone else is copying source files under the digest dir,
|
104 |
+
# wait until done and continue.
|
105 |
+
baton.wait()
|
106 |
+
digest_sources = [os.path.join(digest_build_dir, os.path.basename(x)) for x in sources]
|
107 |
+
torch.utils.cpp_extension.load(name=module_name, build_directory=build_dir,
|
108 |
+
verbose=verbose_build, sources=digest_sources, **build_kwargs)
|
109 |
+
else:
|
110 |
+
torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
|
111 |
+
module = importlib.import_module(module_name)
|
112 |
+
|
113 |
+
except:
|
114 |
+
if verbosity == 'brief':
|
115 |
+
print('Failed!')
|
116 |
+
raise
|
117 |
+
|
118 |
+
# Print status and add to cache.
|
119 |
+
if verbosity == 'full':
|
120 |
+
print(f'Done setting up PyTorch plugin "{module_name}".')
|
121 |
+
elif verbosity == 'brief':
|
122 |
+
print('Done.')
|
123 |
+
_cached_plugins[module_name] = module
|
124 |
+
return module
|
125 |
+
|
126 |
+
#----------------------------------------------------------------------------
|
torch_utils/misc.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import re
|
10 |
+
import contextlib
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import warnings
|
14 |
+
import dnnlib
|
15 |
+
|
16 |
+
#----------------------------------------------------------------------------
|
17 |
+
# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
|
18 |
+
# same constant is used multiple times.
|
19 |
+
|
20 |
+
_constant_cache = dict()
|
21 |
+
|
22 |
+
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
|
23 |
+
value = np.asarray(value)
|
24 |
+
if shape is not None:
|
25 |
+
shape = tuple(shape)
|
26 |
+
if dtype is None:
|
27 |
+
dtype = torch.get_default_dtype()
|
28 |
+
if device is None:
|
29 |
+
device = torch.device('cpu')
|
30 |
+
if memory_format is None:
|
31 |
+
memory_format = torch.contiguous_format
|
32 |
+
|
33 |
+
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
|
34 |
+
tensor = _constant_cache.get(key, None)
|
35 |
+
if tensor is None:
|
36 |
+
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
|
37 |
+
if shape is not None:
|
38 |
+
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
|
39 |
+
tensor = tensor.contiguous(memory_format=memory_format)
|
40 |
+
_constant_cache[key] = tensor
|
41 |
+
return tensor
|
42 |
+
|
43 |
+
#----------------------------------------------------------------------------
|
44 |
+
# Replace NaN/Inf with specified numerical values.
|
45 |
+
|
46 |
+
try:
|
47 |
+
nan_to_num = torch.nan_to_num # 1.8.0a0
|
48 |
+
except AttributeError:
|
49 |
+
def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
|
50 |
+
assert isinstance(input, torch.Tensor)
|
51 |
+
if posinf is None:
|
52 |
+
posinf = torch.finfo(input.dtype).max
|
53 |
+
if neginf is None:
|
54 |
+
neginf = torch.finfo(input.dtype).min
|
55 |
+
assert nan == 0
|
56 |
+
return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
|
57 |
+
|
58 |
+
#----------------------------------------------------------------------------
|
59 |
+
# Symbolic assert.
|
60 |
+
|
61 |
+
try:
|
62 |
+
symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
|
63 |
+
except AttributeError:
|
64 |
+
symbolic_assert = torch.Assert # 1.7.0
|
65 |
+
|
66 |
+
#----------------------------------------------------------------------------
|
67 |
+
# Context manager to suppress known warnings in torch.jit.trace().
|
68 |
+
|
69 |
+
class suppress_tracer_warnings(warnings.catch_warnings):
|
70 |
+
def __enter__(self):
|
71 |
+
super().__enter__()
|
72 |
+
warnings.simplefilter('ignore', category=torch.jit.TracerWarning)
|
73 |
+
return self
|
74 |
+
|
75 |
+
#----------------------------------------------------------------------------
|
76 |
+
# Assert that the shape of a tensor matches the given list of integers.
|
77 |
+
# None indicates that the size of a dimension is allowed to vary.
|
78 |
+
# Performs symbolic assertion when used in torch.jit.trace().
|
79 |
+
|
80 |
+
def assert_shape(tensor, ref_shape):
|
81 |
+
if tensor.ndim != len(ref_shape):
|
82 |
+
raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
|
83 |
+
for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
|
84 |
+
if ref_size is None:
|
85 |
+
pass
|
86 |
+
elif isinstance(ref_size, torch.Tensor):
|
87 |
+
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
88 |
+
symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
|
89 |
+
elif isinstance(size, torch.Tensor):
|
90 |
+
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
91 |
+
symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
|
92 |
+
elif size != ref_size:
|
93 |
+
raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')
|
94 |
+
|
95 |
+
#----------------------------------------------------------------------------
|
96 |
+
# Function decorator that calls torch.autograd.profiler.record_function().
|
97 |
+
|
98 |
+
def profiled_function(fn):
|
99 |
+
def decorator(*args, **kwargs):
|
100 |
+
with torch.autograd.profiler.record_function(fn.__name__):
|
101 |
+
return fn(*args, **kwargs)
|
102 |
+
decorator.__name__ = fn.__name__
|
103 |
+
return decorator
|
104 |
+
|
105 |
+
#----------------------------------------------------------------------------
|
106 |
+
# Sampler for torch.utils.data.DataLoader that loops over the dataset
|
107 |
+
# indefinitely, shuffling items as it goes.
|
108 |
+
|
109 |
+
class InfiniteSampler(torch.utils.data.Sampler):
|
110 |
+
def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
|
111 |
+
assert len(dataset) > 0
|
112 |
+
assert num_replicas > 0
|
113 |
+
assert 0 <= rank < num_replicas
|
114 |
+
assert 0 <= window_size <= 1
|
115 |
+
super().__init__(dataset)
|
116 |
+
self.dataset = dataset
|
117 |
+
self.rank = rank
|
118 |
+
self.num_replicas = num_replicas
|
119 |
+
self.shuffle = shuffle
|
120 |
+
self.seed = seed
|
121 |
+
self.window_size = window_size
|
122 |
+
|
123 |
+
def __iter__(self):
|
124 |
+
order = np.arange(len(self.dataset))
|
125 |
+
rnd = None
|
126 |
+
window = 0
|
127 |
+
if self.shuffle:
|
128 |
+
rnd = np.random.RandomState(self.seed)
|
129 |
+
rnd.shuffle(order)
|
130 |
+
window = int(np.rint(order.size * self.window_size))
|
131 |
+
|
132 |
+
idx = 0
|
133 |
+
while True:
|
134 |
+
i = idx % order.size
|
135 |
+
if idx % self.num_replicas == self.rank:
|
136 |
+
yield order[i]
|
137 |
+
if window >= 2:
|
138 |
+
j = (i - rnd.randint(window)) % order.size
|
139 |
+
order[i], order[j] = order[j], order[i]
|
140 |
+
idx += 1
|
141 |
+
|
142 |
+
#----------------------------------------------------------------------------
|
143 |
+
# Utilities for operating with torch.nn.Module parameters and buffers.
|
144 |
+
|
145 |
+
def params_and_buffers(module):
|
146 |
+
assert isinstance(module, torch.nn.Module)
|
147 |
+
return list(module.parameters()) + list(module.buffers())
|
148 |
+
|
149 |
+
def named_params_and_buffers(module):
|
150 |
+
assert isinstance(module, torch.nn.Module)
|
151 |
+
return list(module.named_parameters()) + list(module.named_buffers())
|
152 |
+
|
153 |
+
def copy_params_and_buffers(src_module, dst_module, require_all=False):
|
154 |
+
assert isinstance(src_module, torch.nn.Module)
|
155 |
+
assert isinstance(dst_module, torch.nn.Module)
|
156 |
+
src_tensors = {name: tensor for name, tensor in named_params_and_buffers(src_module)}
|
157 |
+
for name, tensor in named_params_and_buffers(dst_module):
|
158 |
+
assert (name in src_tensors) or (not require_all)
|
159 |
+
if name in src_tensors:
|
160 |
+
tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
|
161 |
+
|
162 |
+
#----------------------------------------------------------------------------
|
163 |
+
# Context manager for easily enabling/disabling DistributedDataParallel
|
164 |
+
# synchronization.
|
165 |
+
|
166 |
+
@contextlib.contextmanager
|
167 |
+
def ddp_sync(module, sync):
|
168 |
+
assert isinstance(module, torch.nn.Module)
|
169 |
+
if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
|
170 |
+
yield
|
171 |
+
else:
|
172 |
+
with module.no_sync():
|
173 |
+
yield
|
174 |
+
|
175 |
+
#----------------------------------------------------------------------------
|
176 |
+
# Check DistributedDataParallel consistency across processes.
|
177 |
+
|
178 |
+
def check_ddp_consistency(module, ignore_regex=None):
|
179 |
+
assert isinstance(module, torch.nn.Module)
|
180 |
+
for name, tensor in named_params_and_buffers(module):
|
181 |
+
fullname = type(module).__name__ + '.' + name
|
182 |
+
if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
|
183 |
+
continue
|
184 |
+
tensor = tensor.detach()
|
185 |
+
other = tensor.clone()
|
186 |
+
torch.distributed.broadcast(tensor=other, src=0)
|
187 |
+
assert (nan_to_num(tensor) == nan_to_num(other)).all(), fullname
|
188 |
+
|
189 |
+
#----------------------------------------------------------------------------
|
190 |
+
# Print summary table of module hierarchy.
|
191 |
+
|
192 |
+
def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
|
193 |
+
assert isinstance(module, torch.nn.Module)
|
194 |
+
assert not isinstance(module, torch.jit.ScriptModule)
|
195 |
+
assert isinstance(inputs, (tuple, list))
|
196 |
+
|
197 |
+
# Register hooks.
|
198 |
+
entries = []
|
199 |
+
nesting = [0]
|
200 |
+
def pre_hook(_mod, _inputs):
|
201 |
+
nesting[0] += 1
|
202 |
+
def post_hook(mod, _inputs, outputs):
|
203 |
+
nesting[0] -= 1
|
204 |
+
if nesting[0] <= max_nesting:
|
205 |
+
outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
|
206 |
+
outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
|
207 |
+
entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
|
208 |
+
hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
|
209 |
+
hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
|
210 |
+
|
211 |
+
# Run module.
|
212 |
+
outputs = module(*inputs)
|
213 |
+
for hook in hooks:
|
214 |
+
hook.remove()
|
215 |
+
|
216 |
+
# Identify unique outputs, parameters, and buffers.
|
217 |
+
tensors_seen = set()
|
218 |
+
for e in entries:
|
219 |
+
e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
|
220 |
+
e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
|
221 |
+
e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
|
222 |
+
tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}
|
223 |
+
|
224 |
+
# Filter out redundant entries.
|
225 |
+
if skip_redundant:
|
226 |
+
entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]
|
227 |
+
|
228 |
+
# Construct table.
|
229 |
+
rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
|
230 |
+
rows += [['---'] * len(rows[0])]
|
231 |
+
param_total = 0
|
232 |
+
buffer_total = 0
|
233 |
+
submodule_names = {mod: name for name, mod in module.named_modules()}
|
234 |
+
for e in entries:
|
235 |
+
name = '<top-level>' if e.mod is module else submodule_names[e.mod]
|
236 |
+
param_size = sum(t.numel() for t in e.unique_params)
|
237 |
+
buffer_size = sum(t.numel() for t in e.unique_buffers)
|
238 |
+
output_shapes = [str(list(e.outputs[0].shape)) for t in e.outputs]
|
239 |
+
output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
|
240 |
+
rows += [[
|
241 |
+
name + (':0' if len(e.outputs) >= 2 else ''),
|
242 |
+
str(param_size) if param_size else '-',
|
243 |
+
str(buffer_size) if buffer_size else '-',
|
244 |
+
(output_shapes + ['-'])[0],
|
245 |
+
(output_dtypes + ['-'])[0],
|
246 |
+
]]
|
247 |
+
for idx in range(1, len(e.outputs)):
|
248 |
+
rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
|
249 |
+
param_total += param_size
|
250 |
+
buffer_total += buffer_size
|
251 |
+
rows += [['---'] * len(rows[0])]
|
252 |
+
rows += [['Total', str(param_total), str(buffer_total), '-', '-']]
|
253 |
+
|
254 |
+
# Print table.
|
255 |
+
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
256 |
+
print()
|
257 |
+
for row in rows:
|
258 |
+
print(' '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
|
259 |
+
print()
|
260 |
+
return outputs
|
261 |
+
|
262 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
torch_utils/ops/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (183 Bytes). View file
|
|
torch_utils/ops/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (165 Bytes). View file
|
|
torch_utils/ops/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (165 Bytes). View file
|
|
torch_utils/ops/__pycache__/bias_act.cpython-311.pyc
ADDED
Binary file (15 kB). View file
|
|
torch_utils/ops/__pycache__/bias_act.cpython-38.pyc
ADDED
Binary file (8.7 kB). View file
|
|
torch_utils/ops/__pycache__/bias_act.cpython-39.pyc
ADDED
Binary file (8.65 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_gradfix.cpython-311.pyc
ADDED
Binary file (12 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_gradfix.cpython-38.pyc
ADDED
Binary file (6.37 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_gradfix.cpython-39.pyc
ADDED
Binary file (6.32 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_resample.cpython-311.pyc
ADDED
Binary file (8.59 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_resample.cpython-38.pyc
ADDED
Binary file (4.8 kB). View file
|
|
torch_utils/ops/__pycache__/conv2d_resample.cpython-39.pyc
ADDED
Binary file (4.8 kB). View file
|
|
torch_utils/ops/__pycache__/fma.cpython-311.pyc
ADDED
Binary file (2.87 kB). View file
|
|
torch_utils/ops/__pycache__/fma.cpython-38.pyc
ADDED
Binary file (1.74 kB). View file
|
|
torch_utils/ops/__pycache__/fma.cpython-39.pyc
ADDED
Binary file (1.71 kB). View file
|
|
torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-311.pyc
ADDED
Binary file (4.11 kB). View file
|
|
torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-38.pyc
ADDED
Binary file (2.63 kB). View file
|
|
torch_utils/ops/__pycache__/grid_sample_gradfix.cpython-39.pyc
ADDED
Binary file (2.61 kB). View file
|
|
torch_utils/ops/__pycache__/upfirdn2d.cpython-311.pyc
ADDED
Binary file (21.8 kB). View file
|
|
torch_utils/ops/__pycache__/upfirdn2d.cpython-38.pyc
ADDED
Binary file (14.5 kB). View file
|
|
torch_utils/ops/__pycache__/upfirdn2d.cpython-39.pyc
ADDED
Binary file (14.4 kB). View file
|
|
torch_utils/ops/bias_act.cpp
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include <ATen/cuda/CUDAContext.h>
|
11 |
+
#include <c10/cuda/CUDAGuard.h>
|
12 |
+
#include "bias_act.h"
|
13 |
+
|
14 |
+
//------------------------------------------------------------------------
|
15 |
+
|
16 |
+
static bool has_same_layout(torch::Tensor x, torch::Tensor y)
|
17 |
+
{
|
18 |
+
if (x.dim() != y.dim())
|
19 |
+
return false;
|
20 |
+
for (int64_t i = 0; i < x.dim(); i++)
|
21 |
+
{
|
22 |
+
if (x.size(i) != y.size(i))
|
23 |
+
return false;
|
24 |
+
if (x.size(i) >= 2 && x.stride(i) != y.stride(i))
|
25 |
+
return false;
|
26 |
+
}
|
27 |
+
return true;
|
28 |
+
}
|
29 |
+
|
30 |
+
//------------------------------------------------------------------------
|
31 |
+
|
32 |
+
static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp)
|
33 |
+
{
|
34 |
+
// Validate arguments.
|
35 |
+
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
|
36 |
+
TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x");
|
37 |
+
TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x");
|
38 |
+
TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x");
|
39 |
+
TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x");
|
40 |
+
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
|
41 |
+
TORCH_CHECK(b.dim() == 1, "b must have rank 1");
|
42 |
+
TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds");
|
43 |
+
TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements");
|
44 |
+
TORCH_CHECK(grad >= 0, "grad must be non-negative");
|
45 |
+
|
46 |
+
// Validate layout.
|
47 |
+
TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense");
|
48 |
+
TORCH_CHECK(b.is_contiguous(), "b must be contiguous");
|
49 |
+
TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x");
|
50 |
+
TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x");
|
51 |
+
TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x");
|
52 |
+
|
53 |
+
// Create output tensor.
|
54 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
55 |
+
torch::Tensor y = torch::empty_like(x);
|
56 |
+
TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x");
|
57 |
+
|
58 |
+
// Initialize CUDA kernel parameters.
|
59 |
+
bias_act_kernel_params p;
|
60 |
+
p.x = x.data_ptr();
|
61 |
+
p.b = (b.numel()) ? b.data_ptr() : NULL;
|
62 |
+
p.xref = (xref.numel()) ? xref.data_ptr() : NULL;
|
63 |
+
p.yref = (yref.numel()) ? yref.data_ptr() : NULL;
|
64 |
+
p.dy = (dy.numel()) ? dy.data_ptr() : NULL;
|
65 |
+
p.y = y.data_ptr();
|
66 |
+
p.grad = grad;
|
67 |
+
p.act = act;
|
68 |
+
p.alpha = alpha;
|
69 |
+
p.gain = gain;
|
70 |
+
p.clamp = clamp;
|
71 |
+
p.sizeX = (int)x.numel();
|
72 |
+
p.sizeB = (int)b.numel();
|
73 |
+
p.stepB = (b.numel()) ? (int)x.stride(dim) : 1;
|
74 |
+
|
75 |
+
// Choose CUDA kernel.
|
76 |
+
void* kernel;
|
77 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
|
78 |
+
{
|
79 |
+
kernel = choose_bias_act_kernel<scalar_t>(p);
|
80 |
+
});
|
81 |
+
TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func");
|
82 |
+
|
83 |
+
// Launch CUDA kernel.
|
84 |
+
p.loopX = 4;
|
85 |
+
int blockSize = 4 * 32;
|
86 |
+
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
|
87 |
+
void* args[] = {&p};
|
88 |
+
AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
|
89 |
+
return y;
|
90 |
+
}
|
91 |
+
|
92 |
+
//------------------------------------------------------------------------
|
93 |
+
|
94 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
95 |
+
{
|
96 |
+
m.def("bias_act", &bias_act);
|
97 |
+
}
|
98 |
+
|
99 |
+
//------------------------------------------------------------------------
|