ConceptGAN / training /training_loop.py
shaoan xie
Add application file
bc2c9f6
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import time
import copy
import json
import dill as pickle
import psutil
import PIL.Image
import numpy as np
import torch
import dnnlib
from torch_utils import misc
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import grid_sample_gradfix
from torchvision.utils import save_image
import math
import legacy
from metrics import metric_main
import torch.nn.functional as F
np.set_printoptions(formatter={'float': '{:0.2f}'.format})
from collections import Counter
#----------------------------------------------------------------------------
class SparsestVector:
def __init__(self):
self.sparsest_vector = None
def add(self, vector):
"""Add a vector, only keeping it if it is sparser than the current stored one."""
if self.sparsest_vector is None:
self.sparsest_vector = vector
else:
current_nonzero = torch.count_nonzero(self.sparsest_vector).item()
new_nonzero = torch.count_nonzero(vector).item()
# Keep the new vector only if it's sparser (fewer non-zero elements)
if new_nonzero < current_nonzero:
self.sparsest_vector = vector
def check(self):
"""Returns the sparsest vector currently stored."""
return self.sparsest_vector
def setup_snapshot_image_grid(training_set, random_seed=0):
rnd = np.random.RandomState(random_seed)
gw = int(np.clip(768*2 // training_set.image_shape[2], 7, 32))
gh = int(np.clip(432*2 // training_set.image_shape[1], 4, 32))
# No labels => show random subset of training samples.
if not training_set.has_labels:
all_indices = list(range(len(training_set)))
rnd.shuffle(all_indices)
grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)]
label_groups = []
else:
# Group training samples by label.
label_groups = dict() # label => [idx, ...]
for idx in range(len(training_set)):
label = tuple(training_set.get_details(idx).raw_label.flat[::-1])
if label not in label_groups:
label_groups[label] = []
label_groups[label].append(idx)
if training_set.image_shape[1] < 256:
gw *= 2
gh *= len(label_groups)
#gw = min(gw, 16)
# Reorder.
label_order = sorted(label_groups.keys())
for label in label_order:
rnd.shuffle(label_groups[label])
# Organize into grid.
grid_indices = []
for y in range(len(label_groups)):
label = label_order[y % len(label_order)]
indices = label_groups[label]
grid_indices += [indices[x % len(indices)] for x in range(gw)]
label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))]
# Load data.
images, labels = zip(*[training_set[i] for i in grid_indices])
return (gw, len(label_groups)), np.stack(images), np.stack(labels), len(label_groups)
#----------------------------------------------------------------------------
def save_image_grid(img, fname, drange, grid_size):
lo, hi = drange
img = np.asarray(img, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = np.rint(img).clip(0, 255).astype(np.uint8)
gw, gh = grid_size
_N, C, H, W = img.shape
img = img.reshape(gh, gw, C, H, W)
img = img.transpose(0, 3, 1, 4, 2)
img = img.reshape(gh * H, gw * W, C)
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
if C == 3:
PIL.Image.fromarray(img, 'RGB').save(fname)
class VectorHistoryChecker:
def __init__(self, b, d, m):
self.b = b
self.d = d
self.m = m
self.history = torch.ones(b, d, m)*1e99 # Initialize history with zeros
self.current_index = 0
def update_history(self, new_version):
"""Update history with the new version of the vector."""
self.history[:, :, self.current_index] = new_version.cpu()
self.current_index = (self.current_index + 1) % self.m
def check_history(self, input_version):
"""Check if the input version matches all m history versions for each row."""
consistency = torch.ones(self.b, dtype=torch.bool) # Initialize as True for all rows
for i in range(self.m):
# Check row-wise equality across the history
consistency &= torch.all(self.history[:, :, i] == input_version.cpu(), dim=1)
return consistency
def get_history(self):
"""Get the current history."""
return self.history
class ColumnHistoryChecker:
def __init__(self, b, d, m):
self.b = b
self.d = d
self.m = m
self.history = torch.ones(b, d, m)*1e99 # Initialize history with zeros
self.current_index = 0
def update_history(self, new_version):
"""Update history with the new version of the vector."""
self.history[:, :, self.current_index] = new_version.cpu()
self.current_index = (self.current_index + 1) % self.m
def check_history(self, input_version):
"""Check if the input version matches all m history versions for each row."""
consistency = torch.ones(self.d, dtype=torch.bool) # Initialize as True for all rows
for i in range(self.m):
# Check column-wise equality across the history
consistency &= torch.all(self.history[:, :, i] == input_version.cpu(), dim=0)
return consistency
def get_history(self):
"""Get the current history."""
return self.history
#----------------------------------------------------------------------------
def training_loop(
run_dir = '.', # Output directory.
training_set_kwargs = {}, # Options for training set.
data_loader_kwargs = {}, # Options for torch.utils.data.DataLoader.
G_kwargs = {}, # Options for generator network.
D_kwargs = {}, # Options for discriminator network.
G_opt_kwargs = {}, # Options for generator optimizer.
D_opt_kwargs = {}, # Options for discriminator optimizer.
augment_kwargs = None, # Options for augmentation pipeline. None = disable.
loss_kwargs = {}, # Options for loss function.
metrics = [], # Metrics to evaluate during training.
random_seed = 0, # Global random seed.
num_gpus = 1, # Number of GPUs participating in the training.
rank = 0, # Rank of the current process in [0, num_gpus[.
batch_size = 4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus.
batch_gpu = 4, # Number of samples processed at a time by one GPU.
ema_kimg = 10, # Half-life of the exponential moving average (EMA) of generator weights.
ema_rampup = None, # EMA ramp-up coefficient.
G_reg_interval = 4, # How often to perform regularization for G? None = disable lazy regularization.
D_reg_interval = 16, # How often to perform regularization for D? None = disable lazy regularization.
augment_p = 0, # Initial value of augmentation probability.
ada_target = None, # ADA target value. None = fixed p.
ada_interval = 4, # How often to perform ADA adjustment?
ada_kimg = 500, # ADA adjustment speed, measured in how many kimg it takes for p to increase/decrease by one unit.
total_kimg = 25000, # Total length of the training, measured in thousands of real images.
kimg_per_tick = 4, # Progress snapshot interval.
image_snapshot_ticks = 50, # How often to save image snapshots? None = disable.
network_snapshot_ticks = 50, # How often to save network snapshots? None = disable.
resume_pkl = None, # Network pickle to resume training from.
cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark?
allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32?
abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks.
progress_fn = None, # Callback function for updating training progress. Called for all ranks.
lambda_sparse = None,
lambda_entropy = None,
lambda_ortho = None,
lambda_colvar = None,
lambda_rowvar = None,
lambda_equal = None,
lambda_epsilon = None,
lambda_path=None,
g_iter=None,
temperature=1,
):
# Initialize.
start_time = time.time()
device = torch.device('cuda', rank)
np.random.seed(random_seed * num_gpus + rank)
torch.manual_seed(random_seed * num_gpus + rank)
torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed.
torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for matmul
torch.backends.cudnn.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for convolutions
conv2d_gradfix.enabled = True # Improves training speed.
grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe.
# Load training set.
if rank == 0:
print('Loading training set...')
training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) # subclass of training.dataset.Dataset
training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed)
training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs))
if rank == 0:
print()
print('Num images: ', len(training_set))
print('Image shape:', training_set.image_shape)
print('Label shape:', training_set.label_shape)
print()
# Construct networks.
if rank == 0:
print('Constructing networks...')
common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution, img_channels=training_set.num_channels)
G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
G_ema = copy.deepcopy(G).eval()
M_kwargs = dnnlib.EasyDict(class_name='training.networks.ConceptMaskNetwork', c_dim=training_set.label_dim, i_dim=G_kwargs.mapping_kwargs.i_dim)
M = dnnlib.util.construct_class_by_name(**M_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
M_ema = copy.deepcopy(M).eval()
# Resume from existing pickle.
if (resume_pkl is not None) and (rank == 0):
print(f'Resuming from "{resume_pkl}"')
with dnnlib.util.open_url(resume_pkl) as f:
resume_data = legacy.load_network_pkl(f)
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('M', M), ('M_ema', M_ema)]:
misc.copy_params_and_buffers(resume_data[name], module, require_all=False)
# Print network summary tables.
if rank == 0:
z = torch.empty([batch_gpu, G.z_dim], device=device)
c = torch.empty([batch_gpu, G.c_dim], device=device)
m = torch.empty([batch_gpu, G_kwargs.mapping_kwargs.i_dim], device=device)
img = misc.print_module_summary(G, [z, m])
misc.print_module_summary(D, [img, c])
# Setup augmentation.
if rank == 0:
print('Setting up augmentation...')
augment_pipe = None
ada_stats = None
if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None):
augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
augment_pipe.p.copy_(torch.as_tensor(augment_p))
if ada_target is not None:
ada_stats = training_stats.Collector(regex='Loss/signs/real')
# Distribute across GPUs.
if rank == 0:
print(f'Distributing across {num_gpus} GPUs...')
ddp_modules = dict()
for name, module in [('G_mapping', G.mapping), ('G_synthesis', G.synthesis), ('D', D), (None, G_ema), ('augment_pipe', augment_pipe),
('M', M), (None, M_ema)
]:
if (num_gpus > 1) and (module is not None) and len(list(module.parameters())) != 0:
module.requires_grad_(True)
module = torch.nn.parallel.DistributedDataParallel(module, device_ids=[device], broadcast_buffers=False)
module.requires_grad_(False)
if name is not None:
ddp_modules[name] = module
# Setup training phases.
if rank == 0:
print('Setting up training phases...')
loss = dnnlib.util.construct_class_by_name(device=device, **ddp_modules, **loss_kwargs) # subclass of training.loss.Loss
phases = []
for name, module, opt_kwargs, reg_interval in [('G', G, G_opt_kwargs, G_reg_interval), ('D', D, D_opt_kwargs, D_reg_interval)]:
if reg_interval is None:
opt = dnnlib.util.construct_class_by_name(params=module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name+'both', module=module, opt=opt, interval=1)]
else: # Lazy regularization.
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = dnnlib.EasyDict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)]
if name == 'G' and g_iter>0:
phases += ([dnnlib.EasyDict(name=name + 'main', module=module, opt=opt, interval=1)] * g_iter)
phases += [dnnlib.EasyDict(name=name+'reg', module=module, opt=opt, interval=reg_interval)]
for name, module, opt_kwargs, reg_interval in [('M', M, G_opt_kwargs, G_reg_interval)]:
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = dnnlib.EasyDict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
#M_opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
#M_opt = torch.optim.SGD(module.parameters(), lr=0.01, momentum=0.9)
print(opt_kwargs.betas, ' >>>>>>>> opt kwargs ssss')
M_opt = torch.optim.AdamW(module.parameters(), lr=opt_kwargs.lr, betas=(0.9, 0.999), eps=opt_kwargs.eps,
weight_decay=0.01, amsgrad=False)
for phase in phases:
phase.start_event = None
phase.end_event = None
if rank == 0:
phase.start_event = torch.cuda.Event(enable_timing=True)
phase.end_event = torch.cuda.Event(enable_timing=True)
# Export sample images.
grid_size = None
grid_z = None
grid_c = None
if rank == 0:
print('Exporting sample images...')
grid_size, images, labels, num_domains = setup_snapshot_image_grid(training_set=training_set)
save_image_grid(images, os.path.join(run_dir, 'reals.jpg'), drange=[0,255], grid_size=grid_size)
if labels.shape[1] > 0:
grid_z = []
for i in range(grid_size[1]//num_domains):
random_z = (torch.randn(grid_size[0], G.z_dim, device=device))
for j in range(num_domains):
grid_z.append(random_z)
grid_z = torch.cat(grid_z, 0).split(batch_gpu)
else:
grid_z = torch.randn([labels.shape[0], G.z_dim], device=device).split(batch_gpu)
grid_c = torch.from_numpy(labels).to(device)
grid_c = grid_c.split(batch_gpu)
images = torch.cat([G_ema(z=z, c=M_ema(c), noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)]).numpy()
save_image_grid(images, os.path.join(run_dir, 'fakes_init.jpg'), drange=[-1,1], grid_size=grid_size)
# Initialize logs.
if rank == 0:
print('Initializing logs...')
stats_collector = training_stats.Collector(regex='.*')
stats_metrics = dict()
stats_jsonl = None
stats_tfevents = None
if rank == 0:
stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt')
try:
import torch.utils.tensorboard as tensorboard
stats_tfevents = tensorboard.SummaryWriter(run_dir)
except ImportError as err:
print('Skipping tfevents export:', err)
# Train.
if rank == 0:
print(f'Training for {total_kimg} kimg...')
print()
cur_nimg = 0
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - start_time
init_temperature = 1.0
min_temperature = 0.5
batch_idx = 0
if progress_fn is not None:
progress_fn(0, total_kimg)
names = ['Red 0', 'Red 1', 'Green 0', 'Green 1', 'Green 2', 'Green 3', 'Green 4', 'Green 5', 'Green 6', 'Green 7',
'Green 8', 'Green 9', 'Red 2', 'Blue 0', 'Blue 1', 'Blue 2', 'Blue 3', 'Blue 4', 'Blue 5', 'Blue 6', 'Blue 7', 'Blue 8', 'Blue 9',
'Red 3', 'Red 4', 'Red 5', 'Red 6', 'Red 7', 'Red 8', 'Red 9'
]
if G.mapping.c_dim == 30:
names = [
'Blue 0', 'Blue 1', 'Blue 2', 'Blue 3', 'Blue 4', 'Blue 5', 'Blue 6', 'Blue 7', 'Blue 8', 'Blue 9',
'Green 0', 'Green 1', 'Green 2', 'Green 3', 'Green 4', 'Green 5', 'Green 6', 'Green 7', 'Green 8', 'Green 9',
'Red 0', 'Red 1', 'Red 2','Red 3', 'Red 4', 'Red 5', 'Red 6', 'Red 7', 'Red 8', 'Red 9'
]
elif G.mapping.c_dim == 8:
names = [
'Bald NoSmile Male', 'Bald Smile Male', 'Black NoSmile Female', 'Black NoSmile Male', 'Black Smile Female', 'Black Smile Male',
'Blond NoSmile Female', 'Blond Smile Female'
]
#names = ['Green Apple', 'Green Banana', 'Green Pear', 'Red Apple', 'Red Pear', 'Red Strawberry', 'Yellow Banana', 'Yellow Pineapple', 'Yellow StarFruit']
#names = ['Green Apple', 'Green Banana', 'Green Pear', 'Red Apple', 'Red Pear', 'Red Strawberry', 'Yellow Banana', 'Yellow Pineapple', 'Yellow StarFruit']
#names = ['Yellow 1', 'Purple 1', 'Red 1', 'Yellow 2', 'White 1', 'White 2', 'Red 2', 'Purple 2']
version_history_checker = VectorHistoryChecker(G.mapping.c_dim, G.mapping.i_dim, 3)
column_history_cheker = ColumnHistoryChecker(G.mapping.c_dim, G.mapping.i_dim, 3)
binary_mask_checker = SparsestVector()
use_best_binary = 10
while True:
ready = False
cur_kimg = cur_nimg / 1000.0
should_restart = (cur_tick % 40 ==0)
if cur_tick<=5:
cur_lambda_rowvar = lambda_rowvar
cur_lambda_colvar = 0
cur_lambda_sparse = lambda_sparse
cur_entropy_thr = 0.6
cur_lambda_equal = 0
cur_lambda_entropy = lambda_entropy
else:
cur_lambda_rowvar = 0
cur_lambda_colvar = lambda_colvar
cur_lambda_sparse = lambda_sparse
cur_entropy_thr = 0.9
cur_lambda_equal = lambda_equal
cur_lambda_entropy = lambda_entropy
cur_lambda_ortho = lambda_ortho
cur_temperature = 1.
# Fetch training data.
with torch.autograd.profiler.record_function('data_fetch'):
phase_real_img, phase_real_c = next(training_set_iterator)
phase_real_img = (phase_real_img.to(device).to(torch.float32) / 127.5 - 1).split(batch_gpu)
phase_real_c = phase_real_c.to(device).split(batch_gpu)
all_gen_z = torch.randn([len(phases) * batch_size, G.z_dim], device=device)
all_gen_z = [phase_gen_z.split(batch_gpu) for phase_gen_z in all_gen_z.split(batch_size)]
all_gen_c = [training_set.get_label(np.random.randint(len(training_set))) for _ in range(len(phases) * batch_size)]
"""
all_gen_c = []
for ta in tmp_all_gen_c:
all_gen_c.append(F.one_hot(torch.randint(0, 30, (1,)), num_classes=30).float().to(device).squeeze().cpu().numpy())
tmp_all_gen_c = torch.from_numpy(np.stack(tmp_all_gen_c)).to(device)
print(all_gen_c.size(), ' >>>>>>>>>>>>>>>>> all genc ', tmp_all_gen_c.size(), ' >>>>>>>>>>>>>>>>> tmp all genc ')
"""
all_gen_c = torch.from_numpy(np.stack(all_gen_c)).pin_memory().to(device)
all_gen_c = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen_c.split(batch_size)]
loss_dict = {}
# Execute training phases.
gmain_count = 0
for phase, phase_gen_z, phase_gen_c in zip(phases, all_gen_z, all_gen_c):
if batch_idx % phase.interval != 0:
continue
if phase.name == 'Gmain':
gmain_count += 1
only1G = ((cur_tick>use_best_binary) and (gmain_count>1) and (phase.name == 'Gmain'))
if only1G:
continue
# Initialize gradient accumulation.
if phase.start_event is not None:
phase.start_event.record(torch.cuda.current_stream(device))
phase.opt.zero_grad(set_to_none=True)
phase.module.requires_grad_(True)
M_opt.zero_grad(set_to_none=True)
if phase.name == 'Gmain':
M.requires_grad_(True)
# Accumulate gradients over multiple rounds.
for round_idx, (real_img, real_c, gen_z, gen_c) in enumerate(zip(phase_real_img, phase_real_c, phase_gen_z, phase_gen_c)):
sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1)
gain = phase.interval
tmp_loss_dict = loss.accumulate_gradients(phase=phase.name, real_img=real_img, real_c=real_c, gen_z=gen_z, gen_c=gen_c, sync=sync, gain=gain,
lambda_sparse=cur_lambda_sparse, lambda_entropy=cur_lambda_entropy, lambda_ortho=cur_lambda_ortho, lambda_path=lambda_path,
lambda_epsilon=lambda_epsilon, lambda_colvar=cur_lambda_colvar, lambda_rowvar=cur_lambda_rowvar,
lambda_equal=cur_lambda_equal, temperature=cur_temperature, entropy_thr=cur_entropy_thr,
)
loss_dict.update(tmp_loss_dict)
# Update weights.
phase.module.requires_grad_(False)
M.requires_grad_(False)
with torch.autograd.profiler.record_function(phase.name + '_opt'):
for param in phase.module.parameters():
if param.grad is not None:
misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
phase.opt.step()
for param in M.parameters():
if param.grad is not None:
misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
M_opt.step()
if phase.end_event is not None:
phase.end_event.record(torch.cuda.current_stream(device))
# Update G_ema.
with torch.autograd.profiler.record_function('Gema'):
ema_nimg = ema_kimg * 1000
if ema_rampup is not None:
ema_nimg = min(ema_nimg, cur_nimg * ema_rampup)
ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8))
for p_ema, p in zip(G_ema.parameters(), G.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(G_ema.buffers(), G.buffers()):
b_ema.copy_(b)
#ema_beta = 0.9
for p_ema, p in zip(M_ema.parameters(), M.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(M_ema.buffers(), M.buffers()):
b_ema.copy_(b)
# Update state.
cur_nimg += batch_size
batch_idx += 1
# Execute ADA heuristic.
if (ada_stats is not None) and (batch_idx % ada_interval == 0):
ada_stats.update()
adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (ada_kimg * 1000)
augment_pipe.p.copy_((augment_pipe.p + adjust).max(misc.constant(0, device=device)))
# Perform maintenance tasks once per tick.
done = (cur_nimg >= total_kimg * 1000)
if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000):
continue
# Print status line, accumulating the same information in stats_collector.
tick_end_time = time.time()
fields = []
fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"]
fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"]
fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"]
fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"]
fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"]
#fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"]
#fields += [f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"]
#fields += [f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"]
fields += [f"sparse {loss_dict['loss_sparse']:.3f}"]
fields += [f"entropy {loss_dict['loss_entropy']:.3f}"]
fields += [f"path {loss_dict['loss_path']:.3f}"]
fields += [f"equal {loss_dict['loss_equal']:.3f}"]
fields += [f"rowvar {loss_dict['loss_rowvar']:.3f}"]
fields += [f"colvar {loss_dict['loss_colvar']:.3f}"]
fields += [f"lambda_sparse {cur_lambda_sparse:.3f}"]
fields += [f"lambda_entropy {cur_lambda_entropy:.3f}"]
fields += [f"lambda_rowvar {cur_lambda_rowvar:.3f}"]
fields += [f"lambda_colvar {cur_lambda_colvar:.3f}"]
fields += [f"lambda_path {lambda_path:.3f}"]
fields += [f"lambda_equal {lambda_equal:.3f}"]
fields += [f"thr {cur_entropy_thr:.3f}"]
torch.cuda.reset_peak_memory_stats()
#fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"]
training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60))
training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60))
if rank == 0:
print(' '.join(fields))
# Check for abort.
if (not done) and (abort_fn is not None) and abort_fn():
done = True
if rank == 0:
print()
print('Aborting...')
# Save image snapshot.
if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0):
wss = torch.cat([G_ema.mapping(z,M_ema(c)) for z,c in zip(grid_z, grid_c)])
images = torch.cat([G_ema(z=z, c=M_ema(c), noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)])
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
cs = []
for c in grid_c:
cs.append(c.argmax(dim=1))
cs = torch.cat(cs, 0).view(G.mapping.c_dim, -1)
tmp_imgs = images.reshape(G.mapping.c_dim, -1, images.shape[1], images.shape[2], images.shape[3])
images = images.numpy()
wss = wss.reshape(G.mapping.c_dim, -1, wss.shape[1], wss.shape[2])
print(cs.size(), tmp_imgs.shape, wss.shape, ' >>>>>cs size tmp_imgs size <<<<<<<<')
save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg//1000:06d}.jpg'), drange=[-1,1], grid_size=grid_size)
try:
print(G_ema.mapping.importance0, G_ema.mapping.importance1)
except:
pass
all_masks = []
with torch.no_grad():
cin = torch.arange(G.mapping.c_dim, device=device)
cin = F.one_hot(cin, num_classes=G.mapping.c_dim).float()
all_logit = M(cin)
all_soft_mask = ((all_logit))
all_hard_mask = (all_soft_mask > 0.5).float()
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_soft_mask[i].cpu().numpy())
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_hard_mask[i].cpu().numpy().astype(np.uint8))
all_logit = M_ema(cin)
all_soft_mask = ((all_logit))
all_hard_mask = (all_soft_mask > 0.5).float()
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_soft_mask[i].cpu().numpy())
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_hard_mask[i].cpu().numpy().astype(np.uint8))
dscores = []
dhard_masks = all_hard_mask.clone()
dsoft_masks = all_soft_mask.clone()
for i in range(G.mapping.c_dim):
cur_imgs = tmp_imgs[i].to(device)
cur_c = F.one_hot(torch.tensor([i]*cur_imgs.size(0), device=device), num_classes=G.mapping.c_dim).float().to(device)
d_out = D(cur_imgs, cur_c)
d_out = F.softplus(d_out)
print('%40s mean: %.2f min: %.2f max: %.2f' % (names[i], d_out.mean().item(), d_out.min().item(), d_out.max().item()))
dscores.append(d_out.min().item())
#eval_mask = M(cin, eval=True)
#for i in range(G.mapping.c_dim):
# print('%10s' % names[i], ' ', eval_mask[i].cpu().numpy().astype(np.uint8))
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
def get_onehot(y):
shape = y.size()
_, ind = y.max(dim=-1)
y_hard = torch.zeros_like(y).view(-1, shape[-1])
y_hard.scatter_(1, ind.view(-1, 1), 1)
y_hard = y_hard.view(*shape)
return y_hard
def no_same_rows(x):
has = False
for i in range(len(x)):
for j in range(i+1, len(x)):
if torch.allclose(x[i], x[j]):
has = True
return not has
def has_enough_concepts(x):
has = True
for i in range(len(x)):
if torch.sum(x[i])<=1:
has = False
return has
if no_same_rows(dhard_masks) and has_enough_concepts(dhard_masks):
print('')
print('>>>>>>>>>>>>> This version can be used <<<<<<<<<<<<<<')
print('')
ready = True
binary_mask_checker.add(dhard_masks)
try:
best_mask = binary_mask_checker.check()
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', best_mask[i].cpu().numpy().astype(np.uint8), ' best')
except:
pass
masks = all_soft_mask
hard_masks = all_hard_mask
for i in range(G.mapping.i_dim):
cur_i_imgs = []
sorted_index = np.argsort(masks[:, i].cpu().numpy(), axis=0)[::-1]
for j in sorted_index:
if hard_masks[j, i] == 1:
cur_i_imgs.append(tmp_imgs[j])
if len(cur_i_imgs) > 0:
cur_i_imgs = torch.cat(cur_i_imgs, 0)
save_image(cur_i_imgs, os.path.join(run_dir, f'concept_{cur_nimg // 1000:06d}_{i}.jpg'),
nrow=grid_size[0], normalize=True, range=(-1, 1))
if True:
for i in range(G.mapping.c_dim):
if False:
M.param_net.data[i] += -1e9*(dsoft_masks[i]<0.05)
M_ema.param_net.data[i] += -1e9*(dsoft_masks[i]<0.05)
M.use_param[i] = (dsoft_masks[i]<0.05).float()
M_ema.use_param[i] = (dsoft_masks[i]<0.05).float()
#print(dscores[i], names[i], ' >>>>>>. what fuck ', M.use_param.view(-1), M.param_net[i])
#topk = torch.topk(torch.tensor(dscores), k=5)[1]
consistency = version_history_checker.check_history(dhard_masks)
version_history_checker.update_history(dhard_masks)
for i in range(G.mapping.c_dim):
all_sum = torch.sum(dhard_masks, dim=1)
target = torch.mode(all_sum)[0]
cur_sum = all_sum[i]
set_thr = 1.0
cond1 = (dscores[i]>=set_thr)
crit = (cur_sum>1 and cur_sum<=target)
#cond2 = (dscores[i]>=0.6 and cur_sum>1 and cur_sum<=target and (i in list(topk.cpu())))
cond3 = consistency[i]
should_use=True
for j in range(G.mapping.c_dim):
if dscores[j]> dscores[i] and torch.sum(torch.abs(dhard_masks[i]-dhard_masks[j]))==0 and j!=i:
should_use = False
if (cond1) and should_use and crit:
#M.param_net.data[i] = 1e9*dhard_masks[i]
#M.param_net.data[i] += -1e9*(1-dhard_masks[i])
M.target_value[i] = dhard_masks[i]
M.use_param[i] = torch.ones_like(M.use_param[i])
#M_ema.param_net.data[i] = 1e9*dhard_masks[i]
#M_ema.param_net.data[i] += -1e9*(1-dhard_masks[i])
M_ema.target_value[i] = dhard_masks[i]
M_ema.use_param[i] = torch.ones_like(M.use_param[i])
print('>>>>>> replace classss ', names[i], ' ', dscores[i], ' ', M.target_value[i], ' << consistency ', consistency[i])
column_consistency = column_history_cheker.check_history(dhard_masks)
column_history_cheker.update_history(dhard_masks)
for j in range(G.mapping.i_dim):
cur_soft = dsoft_masks[:,j]
cur_hard = dhard_masks[:,j]
act = cur_soft[cur_hard==1]
deact = cur_soft[cur_hard==0]
cur_sum = torch.sum(cur_hard)
if (act.mean()>0.9 and act.min()>0.6 and cur_sum>1 and cur_tick==5):
#M.param_net.data[:,j] = cur_hard*19
#M.param_net.data[:,j] += -1e19*(1-cur_hard)
M.use_param[:,j] = torch.ones_like(M.use_param[:,j])
M.target_value[:,j] = cur_hard
#M_ema.param_net.data[:,j] = cur_hard
#M_ema.param_net.data[:,j] += -1e19*(1-cur_hard)
M_ema.target_value[:,j] = cur_hard
M_ema.use_param[:,j] = torch.ones_like(M.use_param[:,j])
print('>>>>> replace columns ', j, ' ', M.target_value[:,j].view(-1), ' ', column_consistency[j])
if cur_tick == use_best_binary:
best_mask = binary_mask_checker.check()
if best_mask is not None:
M.use_param = torch.ones_like(M.use_param)
M.target_value = best_mask
M_ema.use_param = torch.ones_like(M.use_param)
M_ema.target_value = best_mask
if (cur_tick % 5 ==0 and cur_tick>0) or cur_tick == use_best_binary:
for param in M.parameters():
torch.distributed.broadcast(param.data, 0)
torch.distributed.broadcast(M.use_param, 0)
torch.distributed.broadcast(M_ema.use_param, 0)
torch.distributed.broadcast(M.target_value, 0)
torch.distributed.broadcast(M_ema.target_value, 0)
for param in M_ema.parameters():
torch.distributed.broadcast(param.data, 0)
torch.distributed.barrier()
#print(M.use_param, ' >>>>>>> m M use_oaramssss bripdcatss ')
# Save network snapshot.
snapshot_pkl = None
snapshot_data = None
if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0) and cur_tick>0:
snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs))
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe), ('M', M), ('M_ema', M_ema)]:
if module is not None:
if num_gpus > 1:
misc.check_ddp_consistency(module, ignore_regex=r'.*\.w_avg')
module = copy.deepcopy(module).eval().requires_grad_(False).cpu()
snapshot_data[name] = module
del module # conserve memory
snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:06d}.pkl')
if rank == 0:
#pass
with open(snapshot_pkl, 'wb') as f:
pickle.dump(snapshot_data, f)
# Evaluate metrics.
if (snapshot_data is not None) and (len(metrics) > 0):
if rank == 0:
print('Evaluating metrics...')
for metric in metrics:
result_dict = metric_main.calc_metric(metric=metric, G=snapshot_data['G_ema'], M=snapshot_data['M_ema'],
dataset_kwargs=training_set_kwargs, num_gpus=num_gpus, rank=rank, device=device)
if rank == 0:
metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=snapshot_pkl)
stats_metrics.update(result_dict.results)
del snapshot_data # conserve memory
# Collect statistics.
for phase in phases:
value = []
if (phase.start_event is not None) and (phase.end_event is not None):
phase.end_event.synchronize()
value = phase.start_event.elapsed_time(phase.end_event)
training_stats.report0('Timing/' + phase.name, value)
stats_collector.update()
stats_dict = stats_collector.as_dict()
# Update logs.
timestamp = time.time()
if stats_jsonl is not None:
fields = dict(stats_dict, timestamp=timestamp)
stats_jsonl.write(json.dumps(fields) + '\n')
stats_jsonl.flush()
if stats_tfevents is not None:
global_step = int(cur_nimg / 1e3)
walltime = timestamp - start_time
for name, value in stats_dict.items():
stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime)
for name, value in stats_metrics.items():
stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime)
stats_tfevents.flush()
if progress_fn is not None:
progress_fn(cur_nimg // 1000, total_kimg)
# Update state.
if False and cur_tick%5==0:
for paramgroup in M_opt.param_groups:
paramgroup['lr'] = paramgroup['lr'] * 0.1
print('>>>>>>>LR decay <<<<<<< %.7f' % paramgroup['lr'])
cur_tick += 1
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - tick_end_time
if done:
break
# Done.
if rank == 0:
print()
print('Exiting...')
#----------------------------------------------------------------------------