Spaces:
Sleeping
Sleeping
File size: 5,820 Bytes
bc2c9f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import torch
import torch.nn as nn
import torch.distributions as D
from torch.nn import functional as F
import numpy as np
from torch.autograd import Variable
class BaseFlow(nn.Module):
def __init__(self):
super().__init__()
def sample(self, n=1, context=None, **kwargs):
dim = self.dim
if isinstance(self.dim, int):
dim = [dim, ]
spl = Variable(torch.FloatTensor(n, *dim).normal_())
lgd = Variable(torch.from_numpy(
np.zeros(n).astype('float32')))
if context is None:
context = Variable(torch.from_numpy(
np.ones((n, self.context_dim)).astype('float32')))
if hasattr(self, 'gpu'):
if self.gpu:
spl = spl.cuda()
lgd = lgd.cuda()
context = context.gpu()
return self.forward((spl, lgd, context))
def cuda(self):
self.gpu = True
return super(BaseFlow, self).cuda()
def varify(x):
return torch.autograd.Variable(torch.from_numpy(x))
def oper(array,oper,axis=-1,keepdims=False):
a_oper = oper(array)
if keepdims:
shape = []
for j,s in enumerate(array.size()):
shape.append(s)
shape[axis] = -1
a_oper = a_oper.view(*shape)
return a_oper
def log_sum_exp(A, axis=-1, sum_op=torch.sum):
maximum = lambda x: x.max(axis)[0]
A_max = oper(A,maximum,axis,True)
summation = lambda x: sum_op(torch.exp(x-A_max), axis)
B = torch.log(oper(A,summation,axis,True)) + A_max
return B
delta = 1e-6
logsigmoid = lambda x: -F.softplus(-x)
log = lambda x: torch.log(x*1e2)-np.log(1e2)
softplus_ = nn.Softplus()
softplus = lambda x: softplus_(x) + delta
def softmax(x, dim=-1):
e_x = torch.exp(x - x.max(dim=dim, keepdim=True)[0])
out = e_x / e_x.sum(dim=dim, keepdim=True)
return out
class DenseSigmoidFlow(nn.Module):
def __init__(self, hidden_dim, in_dim=1, out_dim=1):
super().__init__()
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.act_a = lambda x: F.softplus(x)
self.act_b = lambda x: x
self.act_w = lambda x: torch.softmax(x, dim=3)
self.act_u = lambda x: torch.softmax(x, dim=3)
self.u_ = torch.nn.Parameter(torch.Tensor(hidden_dim, in_dim))
self.w_ = torch.nn.Parameter(torch.Tensor(out_dim, hidden_dim))
self.num_params = 3* hidden_dim + in_dim
self.reset_parameters()
def reset_parameters(self):
self.u_.data.uniform_(-0.001, 0.001)
self.w_.data.uniform_(-0.001, 0.001)
def forward(self, x, dsparams):
delta = 1e-7
inv = np.log(np.exp(1 - delta) - 1)
ndim = self.hidden_dim
pre_u = self.u_[None, None, :, :] + dsparams[:, :, -self.in_dim:][:, :, None, :]
pre_w = self.w_[None, None, :, :] + dsparams[:, :, 2 * ndim:3 * ndim][:, :, None, :]
a = self.act_a(dsparams[:, :, 0 * ndim:1 * ndim] + inv)
b = self.act_b(dsparams[:, :, 1 * ndim:2 * ndim])
w = self.act_w(pre_w)
u = self.act_u(pre_u)
pre_sigm = torch.sum(u * a[:, :, :, None] * x[:, :, None, :], 3) + b
sigm = torch.selu(pre_sigm)
x_pre = torch.sum(w * sigm[:, :, None, :], dim=3)
#x_ = torch.special.logit(x_pre, eps=1e-5)
#xnew = x_
xnew = x_pre
return xnew
class DDSF(nn.Module):
def __init__(self, n_blocks=1, hidden_dim=16):
super().__init__()
self.num_params = 0
if n_blocks == 1:
model = [DenseSigmoidFlow(hidden_dim, in_dim=1, out_dim=1)]
else:
model = [DenseSigmoidFlow(hidden_dim=hidden_dim, in_dim=1, out_dim=hidden_dim)]
for _ in range(n_blocks-2):
model += [DenseSigmoidFlow(hidden_dim=hidden_dim, in_dim=hidden_dim, out_dim=hidden_dim)]
model += [DenseSigmoidFlow(hidden_dim=hidden_dim, in_dim=hidden_dim, out_dim=1)]
self.model = nn.Sequential(*model)
for block in self.model:
self.num_params += block.num_params
def forward(self, x, dsparams):
x = x.unsqueeze(2)
start = 0
for block in self.model:
block_dsparams = dsparams[:,:,start:start+block.num_params]
x = block(x, block_dsparams)
start += block.num_params
return x.squeeze(2)
def compute_jacobian(inputs, outputs):
batch_size = outputs.size(0)
outVector = torch.sum(outputs,0).view(-1)
outdim = outVector.size()[0]
jac = torch.stack([torch.autograd.grad(outVector[i], inputs,
retain_graph=True, create_graph=True)[0].view(batch_size, outdim) for i in range(outdim)], dim=1)
jacs = [jac[i,:,:] for i in range(batch_size)]
print(jacs[1])
if __name__ == '__main__':
flow = DDSF(n_blocks=10, hidden_dim=50)
x = torch.arange(20).view(10, 2)/10.-1.
x = Variable(x, requires_grad=True)
dsparams = torch.randn(1, 2, 2*flow.num_params).repeat(10,1,1)
y = flow(x, dsparams)
print(x, y)
compute_jacobian(x, y)
"""
flow = ConvDenseSigmoidFlow(1,256,1)
dsparams = torch.randn(1, 2, 1000).repeat(10,1,1)
x = torch.arange(20).view(10,2,1).repeat(1,1,4).view(10,2,2,2)/10.
print(x.size(), dsparams.size())
out = flow(x, dsparams)
print(x, out.flatten(2), out.size())
flow = ConvDDSF(n_blocks=3)
dsparams = torch.randn(1, 2, flow.num_params).repeat(10,1,1)
x = torch.arange(80).view(10,2,4).view(10,2,2,2)/10
print(x.size(), dsparams.size())
out = flow(x, dsparams)
print(x, out.flatten(2), out.size())
"""
|