File size: 5,589 Bytes
bc2c9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import torch
import pickle
from torchvision.utils import save_image
import numpy as np
from diffusers import StableDiffusionUpscalePipeline
with open('../concept_checkpoints/augceleba_4838.pkl', 'rb') as f:
    G = pickle.load(f)['G_ema'].cpu().float()  # torch.nn.Module


cchoices = ['Bald',
            'Black Hair',
            'Blond Hair',
            'Smiling',
            'NoSmile',
            'Male',
            'Female'
            ]

model_choices = [
    'Change Dim = 8',
    'Change Dim = 15',
    'Change Dim = 30',
    'Change Dim = 60'
]


cchoices = [
    'Big Nose',
    'Black Hair',
    'Blond Hair',
    'Chubby',
    'Eyeglasses',
    'Male',
    'Pale Skin',
    'Smiling',
    'Straight Hair',
    'Wavy Hair',
    'Wearing Hat',
    'Young'
]


import requests
from PIL import Image
from io import BytesIO
from diffusers import LDMSuperResolutionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "CompVis/ldm-super-resolution-4x-openimages"

# load model and scheduler
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
pipeline = pipeline.to(device)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipeline = StableDiffusionUpscalePipeline.from_pretrained(
    model_id, variant="fp32", torch_dtype=torch.float32
)
# let's download an  image


def super_res(low_res_img):
    # run pipeline in inference (sample random noise and denoise)
    #upscaled_image = pipeline(low_res_img, num_inference_steps=10, eta=1).images[0]
    upscaled_image = pipeline(prompt="a sharp image of human face", image=low_res_img, num_inference_steps=10).images[0]
    return upscaled_image


@torch.no_grad()
def generate(seed, *checkboxes):
    z = torch.randn([1, G.z_dim], generator=torch.Generator().manual_seed(seed))
    #m = torch.tensor([[1, 0, 0, 0, 1, 1, 0.]]).repeat(1, 1)
    checkboxes_vector = torch.zeros([20])
    for i in range(len(checkboxes)):
        if i == 1:
            checkboxes_vector[cchoices.index('Black Hair')] = checkboxes[i]
        elif i == 2:
            checkboxes_vector[cchoices.index('Blond Hair')] = checkboxes[i]
        elif i == 3:
            checkboxes_vector[cchoices.index('Straight Hair')] = checkboxes[i]
        elif i == 4:
            checkboxes_vector[cchoices.index('Wavy Hair')] = checkboxes[i]
        elif i == 5:
            checkboxes_vector[cchoices.index('Young')] = checkboxes[i]
        elif i == 6:
            checkboxes_vector[cchoices.index('Male')] = checkboxes[i]
        elif i == 9:
            checkboxes_vector[cchoices.index('Big Nose')] = checkboxes[i]
        elif i == 10:
            checkboxes_vector[cchoices.index('Chubby')] = checkboxes[i]
        elif i == 11:
            checkboxes_vector[cchoices.index('Eyeglasses')] = checkboxes[i]
        elif i == 12:
            checkboxes_vector[cchoices.index('Pale Skin')] = checkboxes[i]
        elif i == 13:
            checkboxes_vector[cchoices.index('Smiling')] = checkboxes[i]
        elif i == 14:
            checkboxes_vector[cchoices.index('Wearing Hat')] = checkboxes[i] * 1.5


    is_young = checkboxes[5]
    is_male = checkboxes[6]
    is_bald = checkboxes[0]
    is_goatee = checkboxes[7]
    is_mustache = checkboxes[8]

    checkboxes_vector[12] = is_mustache * 1.5
    checkboxes_vector[13] = is_mustache * 1.5
    checkboxes_vector[14] = is_goatee *1.5
    checkboxes_vector[15] = is_goatee*1.5

    checkboxes_vector[16] = is_bald
    checkboxes_vector[17] = is_bald
    checkboxes_vector[18] = is_bald
    checkboxes_vector[19] = is_bald



    print(checkboxes_vector)

    m = checkboxes_vector.view(1, 20)
    ws = G.mapping(z, m, truncation_psi=0.5)
    img = (G.synthesis(ws, force_fp32=True).clip(-1,1)+1)/2
    up_img = np.array(super_res(img))
    print(img.min(), img.max(), up_img.min(), up_img.max(), ' >>>>>>image sis zee')
    #return img[0].permute(1, 2, 0).numpy()
    return up_img


# Create the interface using gr.Blocks
with gr.Blocks() as demo:
    with gr.Row():
        sliders = [
            gr.Slider(label='Bald', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Black Hair', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Blond Hair', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Straight Hair', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Wavy Hair', minimum=0, maximum=1, step=0.01),
        ]

    with gr.Row():
        sliders += [gr.Slider(label='Young', minimum=0, maximum=1, step=0.01)]
        sliders += [gr.Slider(label='Male', minimum=0, maximum=1, step=0.01)]

    with gr.Row():
        sliders += [gr.Slider(label='Goatee', minimum=0, maximum=1, step=0.01)]
        sliders += [gr.Slider(label='Mustache', minimum=0, maximum=1, step=0.01)]

    with gr.Row():
        sliders += [
            gr.Slider(label='Big Nose', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Chubby', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Eyeglasses', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Pale Skin', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Smiling', minimum=0, maximum=1, step=0.01),
            gr.Slider(label='Wearing Hat', minimum=0, maximum=1, step=0.01),
        ]

    seed_input = gr.Number(label="Seed")
    generate_button = gr.Button("Generate")

    output_image = gr.Image(label="Generated Image")

    # Set the action for the button
    generate_button.click(fn=generate, inputs=[seed_input] + sliders, outputs=output_image)

# Launch the demo
demo.launch()