Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 41,855 Bytes
bc2c9f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import time
import copy
import json
import dill as pickle
import psutil
import PIL.Image
import numpy as np
import torch
import dnnlib
from torch_utils import misc
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import grid_sample_gradfix
from torchvision.utils import save_image
import math
import legacy
from metrics import metric_main
import torch.nn.functional as F
np.set_printoptions(formatter={'float': '{:0.2f}'.format})
from collections import Counter
#----------------------------------------------------------------------------
class SparsestVector:
def __init__(self):
self.sparsest_vector = None
def add(self, vector):
"""Add a vector, only keeping it if it is sparser than the current stored one."""
if self.sparsest_vector is None:
self.sparsest_vector = vector
else:
current_nonzero = torch.count_nonzero(self.sparsest_vector).item()
new_nonzero = torch.count_nonzero(vector).item()
# Keep the new vector only if it's sparser (fewer non-zero elements)
if new_nonzero < current_nonzero:
self.sparsest_vector = vector
def check(self):
"""Returns the sparsest vector currently stored."""
return self.sparsest_vector
def setup_snapshot_image_grid(training_set, random_seed=0):
rnd = np.random.RandomState(random_seed)
gw = int(np.clip(768*2 // training_set.image_shape[2], 7, 32))
gh = int(np.clip(432*2 // training_set.image_shape[1], 4, 32))
# No labels => show random subset of training samples.
if not training_set.has_labels:
all_indices = list(range(len(training_set)))
rnd.shuffle(all_indices)
grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)]
label_groups = []
else:
# Group training samples by label.
label_groups = dict() # label => [idx, ...]
for idx in range(len(training_set)):
label = tuple(training_set.get_details(idx).raw_label.flat[::-1])
if label not in label_groups:
label_groups[label] = []
label_groups[label].append(idx)
if training_set.image_shape[1] < 256:
gw *= 2
gh *= len(label_groups)
#gw = min(gw, 16)
# Reorder.
label_order = sorted(label_groups.keys())
for label in label_order:
rnd.shuffle(label_groups[label])
# Organize into grid.
grid_indices = []
for y in range(len(label_groups)):
label = label_order[y % len(label_order)]
indices = label_groups[label]
grid_indices += [indices[x % len(indices)] for x in range(gw)]
label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))]
# Load data.
images, labels = zip(*[training_set[i] for i in grid_indices])
return (gw, len(label_groups)), np.stack(images), np.stack(labels), len(label_groups)
#----------------------------------------------------------------------------
def save_image_grid(img, fname, drange, grid_size):
lo, hi = drange
img = np.asarray(img, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = np.rint(img).clip(0, 255).astype(np.uint8)
gw, gh = grid_size
_N, C, H, W = img.shape
img = img.reshape(gh, gw, C, H, W)
img = img.transpose(0, 3, 1, 4, 2)
img = img.reshape(gh * H, gw * W, C)
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
if C == 3:
PIL.Image.fromarray(img, 'RGB').save(fname)
class VectorHistoryChecker:
def __init__(self, b, d, m):
self.b = b
self.d = d
self.m = m
self.history = torch.ones(b, d, m)*1e99 # Initialize history with zeros
self.current_index = 0
def update_history(self, new_version):
"""Update history with the new version of the vector."""
self.history[:, :, self.current_index] = new_version.cpu()
self.current_index = (self.current_index + 1) % self.m
def check_history(self, input_version):
"""Check if the input version matches all m history versions for each row."""
consistency = torch.ones(self.b, dtype=torch.bool) # Initialize as True for all rows
for i in range(self.m):
# Check row-wise equality across the history
consistency &= torch.all(self.history[:, :, i] == input_version.cpu(), dim=1)
return consistency
def get_history(self):
"""Get the current history."""
return self.history
class ColumnHistoryChecker:
def __init__(self, b, d, m):
self.b = b
self.d = d
self.m = m
self.history = torch.ones(b, d, m)*1e99 # Initialize history with zeros
self.current_index = 0
def update_history(self, new_version):
"""Update history with the new version of the vector."""
self.history[:, :, self.current_index] = new_version.cpu()
self.current_index = (self.current_index + 1) % self.m
def check_history(self, input_version):
"""Check if the input version matches all m history versions for each row."""
consistency = torch.ones(self.d, dtype=torch.bool) # Initialize as True for all rows
for i in range(self.m):
# Check column-wise equality across the history
consistency &= torch.all(self.history[:, :, i] == input_version.cpu(), dim=0)
return consistency
def get_history(self):
"""Get the current history."""
return self.history
#----------------------------------------------------------------------------
def training_loop(
run_dir = '.', # Output directory.
training_set_kwargs = {}, # Options for training set.
data_loader_kwargs = {}, # Options for torch.utils.data.DataLoader.
G_kwargs = {}, # Options for generator network.
D_kwargs = {}, # Options for discriminator network.
G_opt_kwargs = {}, # Options for generator optimizer.
D_opt_kwargs = {}, # Options for discriminator optimizer.
augment_kwargs = None, # Options for augmentation pipeline. None = disable.
loss_kwargs = {}, # Options for loss function.
metrics = [], # Metrics to evaluate during training.
random_seed = 0, # Global random seed.
num_gpus = 1, # Number of GPUs participating in the training.
rank = 0, # Rank of the current process in [0, num_gpus[.
batch_size = 4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus.
batch_gpu = 4, # Number of samples processed at a time by one GPU.
ema_kimg = 10, # Half-life of the exponential moving average (EMA) of generator weights.
ema_rampup = None, # EMA ramp-up coefficient.
G_reg_interval = 4, # How often to perform regularization for G? None = disable lazy regularization.
D_reg_interval = 16, # How often to perform regularization for D? None = disable lazy regularization.
augment_p = 0, # Initial value of augmentation probability.
ada_target = None, # ADA target value. None = fixed p.
ada_interval = 4, # How often to perform ADA adjustment?
ada_kimg = 500, # ADA adjustment speed, measured in how many kimg it takes for p to increase/decrease by one unit.
total_kimg = 25000, # Total length of the training, measured in thousands of real images.
kimg_per_tick = 4, # Progress snapshot interval.
image_snapshot_ticks = 50, # How often to save image snapshots? None = disable.
network_snapshot_ticks = 50, # How often to save network snapshots? None = disable.
resume_pkl = None, # Network pickle to resume training from.
cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark?
allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32?
abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks.
progress_fn = None, # Callback function for updating training progress. Called for all ranks.
lambda_sparse = None,
lambda_entropy = None,
lambda_ortho = None,
lambda_colvar = None,
lambda_rowvar = None,
lambda_equal = None,
lambda_epsilon = None,
lambda_path=None,
g_iter=None,
temperature=1,
):
# Initialize.
start_time = time.time()
device = torch.device('cuda', rank)
np.random.seed(random_seed * num_gpus + rank)
torch.manual_seed(random_seed * num_gpus + rank)
torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed.
torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for matmul
torch.backends.cudnn.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for convolutions
conv2d_gradfix.enabled = True # Improves training speed.
grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe.
# Load training set.
if rank == 0:
print('Loading training set...')
training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) # subclass of training.dataset.Dataset
training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed)
training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs))
if rank == 0:
print()
print('Num images: ', len(training_set))
print('Image shape:', training_set.image_shape)
print('Label shape:', training_set.label_shape)
print()
# Construct networks.
if rank == 0:
print('Constructing networks...')
common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution, img_channels=training_set.num_channels)
G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
G_ema = copy.deepcopy(G).eval()
M_kwargs = dnnlib.EasyDict(class_name='training.networks.ConceptMaskNetwork', c_dim=training_set.label_dim, i_dim=G_kwargs.mapping_kwargs.i_dim)
M = dnnlib.util.construct_class_by_name(**M_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
M_ema = copy.deepcopy(M).eval()
# Resume from existing pickle.
if (resume_pkl is not None) and (rank == 0):
print(f'Resuming from "{resume_pkl}"')
with dnnlib.util.open_url(resume_pkl) as f:
resume_data = legacy.load_network_pkl(f)
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('M', M), ('M_ema', M_ema)]:
misc.copy_params_and_buffers(resume_data[name], module, require_all=False)
# Print network summary tables.
if rank == 0:
z = torch.empty([batch_gpu, G.z_dim], device=device)
c = torch.empty([batch_gpu, G.c_dim], device=device)
m = torch.empty([batch_gpu, G_kwargs.mapping_kwargs.i_dim], device=device)
img = misc.print_module_summary(G, [z, m])
misc.print_module_summary(D, [img, c])
# Setup augmentation.
if rank == 0:
print('Setting up augmentation...')
augment_pipe = None
ada_stats = None
if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None):
augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
augment_pipe.p.copy_(torch.as_tensor(augment_p))
if ada_target is not None:
ada_stats = training_stats.Collector(regex='Loss/signs/real')
# Distribute across GPUs.
if rank == 0:
print(f'Distributing across {num_gpus} GPUs...')
ddp_modules = dict()
for name, module in [('G_mapping', G.mapping), ('G_synthesis', G.synthesis), ('D', D), (None, G_ema), ('augment_pipe', augment_pipe),
('M', M), (None, M_ema)
]:
if (num_gpus > 1) and (module is not None) and len(list(module.parameters())) != 0:
module.requires_grad_(True)
module = torch.nn.parallel.DistributedDataParallel(module, device_ids=[device], broadcast_buffers=False)
module.requires_grad_(False)
if name is not None:
ddp_modules[name] = module
# Setup training phases.
if rank == 0:
print('Setting up training phases...')
loss = dnnlib.util.construct_class_by_name(device=device, **ddp_modules, **loss_kwargs) # subclass of training.loss.Loss
phases = []
for name, module, opt_kwargs, reg_interval in [('G', G, G_opt_kwargs, G_reg_interval), ('D', D, D_opt_kwargs, D_reg_interval)]:
if reg_interval is None:
opt = dnnlib.util.construct_class_by_name(params=module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name+'both', module=module, opt=opt, interval=1)]
else: # Lazy regularization.
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = dnnlib.EasyDict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)]
if name == 'G' and g_iter>0:
phases += ([dnnlib.EasyDict(name=name + 'main', module=module, opt=opt, interval=1)] * g_iter)
phases += [dnnlib.EasyDict(name=name+'reg', module=module, opt=opt, interval=reg_interval)]
for name, module, opt_kwargs, reg_interval in [('M', M, G_opt_kwargs, G_reg_interval)]:
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = dnnlib.EasyDict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
#M_opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
#M_opt = torch.optim.SGD(module.parameters(), lr=0.01, momentum=0.9)
print(opt_kwargs.betas, ' >>>>>>>> opt kwargs ssss')
M_opt = torch.optim.AdamW(module.parameters(), lr=opt_kwargs.lr, betas=(0.9, 0.999), eps=opt_kwargs.eps,
weight_decay=0.01, amsgrad=False)
for phase in phases:
phase.start_event = None
phase.end_event = None
if rank == 0:
phase.start_event = torch.cuda.Event(enable_timing=True)
phase.end_event = torch.cuda.Event(enable_timing=True)
# Export sample images.
grid_size = None
grid_z = None
grid_c = None
if rank == 0:
print('Exporting sample images...')
grid_size, images, labels, num_domains = setup_snapshot_image_grid(training_set=training_set)
save_image_grid(images, os.path.join(run_dir, 'reals.jpg'), drange=[0,255], grid_size=grid_size)
if labels.shape[1] > 0:
grid_z = []
for i in range(grid_size[1]//num_domains):
random_z = (torch.randn(grid_size[0], G.z_dim, device=device))
for j in range(num_domains):
grid_z.append(random_z)
grid_z = torch.cat(grid_z, 0).split(batch_gpu)
else:
grid_z = torch.randn([labels.shape[0], G.z_dim], device=device).split(batch_gpu)
grid_c = torch.from_numpy(labels).to(device)
grid_c = grid_c.split(batch_gpu)
images = torch.cat([G_ema(z=z, c=M_ema(c), noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)]).numpy()
save_image_grid(images, os.path.join(run_dir, 'fakes_init.jpg'), drange=[-1,1], grid_size=grid_size)
# Initialize logs.
if rank == 0:
print('Initializing logs...')
stats_collector = training_stats.Collector(regex='.*')
stats_metrics = dict()
stats_jsonl = None
stats_tfevents = None
if rank == 0:
stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt')
try:
import torch.utils.tensorboard as tensorboard
stats_tfevents = tensorboard.SummaryWriter(run_dir)
except ImportError as err:
print('Skipping tfevents export:', err)
# Train.
if rank == 0:
print(f'Training for {total_kimg} kimg...')
print()
cur_nimg = 0
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - start_time
init_temperature = 1.0
min_temperature = 0.5
batch_idx = 0
if progress_fn is not None:
progress_fn(0, total_kimg)
names = ['Red 0', 'Red 1', 'Green 0', 'Green 1', 'Green 2', 'Green 3', 'Green 4', 'Green 5', 'Green 6', 'Green 7',
'Green 8', 'Green 9', 'Red 2', 'Blue 0', 'Blue 1', 'Blue 2', 'Blue 3', 'Blue 4', 'Blue 5', 'Blue 6', 'Blue 7', 'Blue 8', 'Blue 9',
'Red 3', 'Red 4', 'Red 5', 'Red 6', 'Red 7', 'Red 8', 'Red 9'
]
if G.mapping.c_dim == 30:
names = [
'Blue 0', 'Blue 1', 'Blue 2', 'Blue 3', 'Blue 4', 'Blue 5', 'Blue 6', 'Blue 7', 'Blue 8', 'Blue 9',
'Green 0', 'Green 1', 'Green 2', 'Green 3', 'Green 4', 'Green 5', 'Green 6', 'Green 7', 'Green 8', 'Green 9',
'Red 0', 'Red 1', 'Red 2','Red 3', 'Red 4', 'Red 5', 'Red 6', 'Red 7', 'Red 8', 'Red 9'
]
elif G.mapping.c_dim == 8:
names = [
'Bald NoSmile Male', 'Bald Smile Male', 'Black NoSmile Female', 'Black NoSmile Male', 'Black Smile Female', 'Black Smile Male',
'Blond NoSmile Female', 'Blond Smile Female'
]
#names = ['Green Apple', 'Green Banana', 'Green Pear', 'Red Apple', 'Red Pear', 'Red Strawberry', 'Yellow Banana', 'Yellow Pineapple', 'Yellow StarFruit']
#names = ['Green Apple', 'Green Banana', 'Green Pear', 'Red Apple', 'Red Pear', 'Red Strawberry', 'Yellow Banana', 'Yellow Pineapple', 'Yellow StarFruit']
#names = ['Yellow 1', 'Purple 1', 'Red 1', 'Yellow 2', 'White 1', 'White 2', 'Red 2', 'Purple 2']
version_history_checker = VectorHistoryChecker(G.mapping.c_dim, G.mapping.i_dim, 3)
column_history_cheker = ColumnHistoryChecker(G.mapping.c_dim, G.mapping.i_dim, 3)
binary_mask_checker = SparsestVector()
use_best_binary = 10
while True:
ready = False
cur_kimg = cur_nimg / 1000.0
should_restart = (cur_tick % 40 ==0)
if cur_tick<=5:
cur_lambda_rowvar = lambda_rowvar
cur_lambda_colvar = 0
cur_lambda_sparse = lambda_sparse
cur_entropy_thr = 0.6
cur_lambda_equal = 0
cur_lambda_entropy = lambda_entropy
else:
cur_lambda_rowvar = 0
cur_lambda_colvar = lambda_colvar
cur_lambda_sparse = lambda_sparse
cur_entropy_thr = 0.9
cur_lambda_equal = lambda_equal
cur_lambda_entropy = lambda_entropy
cur_lambda_ortho = lambda_ortho
cur_temperature = 1.
# Fetch training data.
with torch.autograd.profiler.record_function('data_fetch'):
phase_real_img, phase_real_c = next(training_set_iterator)
phase_real_img = (phase_real_img.to(device).to(torch.float32) / 127.5 - 1).split(batch_gpu)
phase_real_c = phase_real_c.to(device).split(batch_gpu)
all_gen_z = torch.randn([len(phases) * batch_size, G.z_dim], device=device)
all_gen_z = [phase_gen_z.split(batch_gpu) for phase_gen_z in all_gen_z.split(batch_size)]
all_gen_c = [training_set.get_label(np.random.randint(len(training_set))) for _ in range(len(phases) * batch_size)]
"""
all_gen_c = []
for ta in tmp_all_gen_c:
all_gen_c.append(F.one_hot(torch.randint(0, 30, (1,)), num_classes=30).float().to(device).squeeze().cpu().numpy())
tmp_all_gen_c = torch.from_numpy(np.stack(tmp_all_gen_c)).to(device)
print(all_gen_c.size(), ' >>>>>>>>>>>>>>>>> all genc ', tmp_all_gen_c.size(), ' >>>>>>>>>>>>>>>>> tmp all genc ')
"""
all_gen_c = torch.from_numpy(np.stack(all_gen_c)).pin_memory().to(device)
all_gen_c = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen_c.split(batch_size)]
loss_dict = {}
# Execute training phases.
gmain_count = 0
for phase, phase_gen_z, phase_gen_c in zip(phases, all_gen_z, all_gen_c):
if batch_idx % phase.interval != 0:
continue
if phase.name == 'Gmain':
gmain_count += 1
only1G = ((cur_tick>use_best_binary) and (gmain_count>1) and (phase.name == 'Gmain'))
if only1G:
continue
# Initialize gradient accumulation.
if phase.start_event is not None:
phase.start_event.record(torch.cuda.current_stream(device))
phase.opt.zero_grad(set_to_none=True)
phase.module.requires_grad_(True)
M_opt.zero_grad(set_to_none=True)
if phase.name == 'Gmain':
M.requires_grad_(True)
# Accumulate gradients over multiple rounds.
for round_idx, (real_img, real_c, gen_z, gen_c) in enumerate(zip(phase_real_img, phase_real_c, phase_gen_z, phase_gen_c)):
sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1)
gain = phase.interval
tmp_loss_dict = loss.accumulate_gradients(phase=phase.name, real_img=real_img, real_c=real_c, gen_z=gen_z, gen_c=gen_c, sync=sync, gain=gain,
lambda_sparse=cur_lambda_sparse, lambda_entropy=cur_lambda_entropy, lambda_ortho=cur_lambda_ortho, lambda_path=lambda_path,
lambda_epsilon=lambda_epsilon, lambda_colvar=cur_lambda_colvar, lambda_rowvar=cur_lambda_rowvar,
lambda_equal=cur_lambda_equal, temperature=cur_temperature, entropy_thr=cur_entropy_thr,
)
loss_dict.update(tmp_loss_dict)
# Update weights.
phase.module.requires_grad_(False)
M.requires_grad_(False)
with torch.autograd.profiler.record_function(phase.name + '_opt'):
for param in phase.module.parameters():
if param.grad is not None:
misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
phase.opt.step()
for param in M.parameters():
if param.grad is not None:
misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
M_opt.step()
if phase.end_event is not None:
phase.end_event.record(torch.cuda.current_stream(device))
# Update G_ema.
with torch.autograd.profiler.record_function('Gema'):
ema_nimg = ema_kimg * 1000
if ema_rampup is not None:
ema_nimg = min(ema_nimg, cur_nimg * ema_rampup)
ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8))
for p_ema, p in zip(G_ema.parameters(), G.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(G_ema.buffers(), G.buffers()):
b_ema.copy_(b)
#ema_beta = 0.9
for p_ema, p in zip(M_ema.parameters(), M.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(M_ema.buffers(), M.buffers()):
b_ema.copy_(b)
# Update state.
cur_nimg += batch_size
batch_idx += 1
# Execute ADA heuristic.
if (ada_stats is not None) and (batch_idx % ada_interval == 0):
ada_stats.update()
adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (ada_kimg * 1000)
augment_pipe.p.copy_((augment_pipe.p + adjust).max(misc.constant(0, device=device)))
# Perform maintenance tasks once per tick.
done = (cur_nimg >= total_kimg * 1000)
if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000):
continue
# Print status line, accumulating the same information in stats_collector.
tick_end_time = time.time()
fields = []
fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"]
fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"]
fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"]
fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"]
fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"]
#fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"]
#fields += [f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"]
#fields += [f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"]
fields += [f"sparse {loss_dict['loss_sparse']:.3f}"]
fields += [f"entropy {loss_dict['loss_entropy']:.3f}"]
fields += [f"path {loss_dict['loss_path']:.3f}"]
fields += [f"equal {loss_dict['loss_equal']:.3f}"]
fields += [f"rowvar {loss_dict['loss_rowvar']:.3f}"]
fields += [f"colvar {loss_dict['loss_colvar']:.3f}"]
fields += [f"lambda_sparse {cur_lambda_sparse:.3f}"]
fields += [f"lambda_entropy {cur_lambda_entropy:.3f}"]
fields += [f"lambda_rowvar {cur_lambda_rowvar:.3f}"]
fields += [f"lambda_colvar {cur_lambda_colvar:.3f}"]
fields += [f"lambda_path {lambda_path:.3f}"]
fields += [f"lambda_equal {lambda_equal:.3f}"]
fields += [f"thr {cur_entropy_thr:.3f}"]
torch.cuda.reset_peak_memory_stats()
#fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"]
training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60))
training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60))
if rank == 0:
print(' '.join(fields))
# Check for abort.
if (not done) and (abort_fn is not None) and abort_fn():
done = True
if rank == 0:
print()
print('Aborting...')
# Save image snapshot.
if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0):
wss = torch.cat([G_ema.mapping(z,M_ema(c)) for z,c in zip(grid_z, grid_c)])
images = torch.cat([G_ema(z=z, c=M_ema(c), noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)])
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
cs = []
for c in grid_c:
cs.append(c.argmax(dim=1))
cs = torch.cat(cs, 0).view(G.mapping.c_dim, -1)
tmp_imgs = images.reshape(G.mapping.c_dim, -1, images.shape[1], images.shape[2], images.shape[3])
images = images.numpy()
wss = wss.reshape(G.mapping.c_dim, -1, wss.shape[1], wss.shape[2])
print(cs.size(), tmp_imgs.shape, wss.shape, ' >>>>>cs size tmp_imgs size <<<<<<<<')
save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg//1000:06d}.jpg'), drange=[-1,1], grid_size=grid_size)
try:
print(G_ema.mapping.importance0, G_ema.mapping.importance1)
except:
pass
all_masks = []
with torch.no_grad():
cin = torch.arange(G.mapping.c_dim, device=device)
cin = F.one_hot(cin, num_classes=G.mapping.c_dim).float()
all_logit = M(cin)
all_soft_mask = ((all_logit))
all_hard_mask = (all_soft_mask > 0.5).float()
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_soft_mask[i].cpu().numpy())
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_hard_mask[i].cpu().numpy().astype(np.uint8))
all_logit = M_ema(cin)
all_soft_mask = ((all_logit))
all_hard_mask = (all_soft_mask > 0.5).float()
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_soft_mask[i].cpu().numpy())
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', all_hard_mask[i].cpu().numpy().astype(np.uint8))
dscores = []
dhard_masks = all_hard_mask.clone()
dsoft_masks = all_soft_mask.clone()
for i in range(G.mapping.c_dim):
cur_imgs = tmp_imgs[i].to(device)
cur_c = F.one_hot(torch.tensor([i]*cur_imgs.size(0), device=device), num_classes=G.mapping.c_dim).float().to(device)
d_out = D(cur_imgs, cur_c)
d_out = F.softplus(d_out)
print('%40s mean: %.2f min: %.2f max: %.2f' % (names[i], d_out.mean().item(), d_out.min().item(), d_out.max().item()))
dscores.append(d_out.min().item())
#eval_mask = M(cin, eval=True)
#for i in range(G.mapping.c_dim):
# print('%10s' % names[i], ' ', eval_mask[i].cpu().numpy().astype(np.uint8))
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
def get_onehot(y):
shape = y.size()
_, ind = y.max(dim=-1)
y_hard = torch.zeros_like(y).view(-1, shape[-1])
y_hard.scatter_(1, ind.view(-1, 1), 1)
y_hard = y_hard.view(*shape)
return y_hard
def no_same_rows(x):
has = False
for i in range(len(x)):
for j in range(i+1, len(x)):
if torch.allclose(x[i], x[j]):
has = True
return not has
def has_enough_concepts(x):
has = True
for i in range(len(x)):
if torch.sum(x[i])<=1:
has = False
return has
if no_same_rows(dhard_masks) and has_enough_concepts(dhard_masks):
print('')
print('>>>>>>>>>>>>> This version can be used <<<<<<<<<<<<<<')
print('')
ready = True
binary_mask_checker.add(dhard_masks)
try:
best_mask = binary_mask_checker.check()
for i in range(G.mapping.c_dim):
print('%40s' % names[i], ' ', best_mask[i].cpu().numpy().astype(np.uint8), ' best')
except:
pass
masks = all_soft_mask
hard_masks = all_hard_mask
for i in range(G.mapping.i_dim):
cur_i_imgs = []
sorted_index = np.argsort(masks[:, i].cpu().numpy(), axis=0)[::-1]
for j in sorted_index:
if hard_masks[j, i] == 1:
cur_i_imgs.append(tmp_imgs[j])
if len(cur_i_imgs) > 0:
cur_i_imgs = torch.cat(cur_i_imgs, 0)
save_image(cur_i_imgs, os.path.join(run_dir, f'concept_{cur_nimg // 1000:06d}_{i}.jpg'),
nrow=grid_size[0], normalize=True, range=(-1, 1))
if True:
for i in range(G.mapping.c_dim):
if False:
M.param_net.data[i] += -1e9*(dsoft_masks[i]<0.05)
M_ema.param_net.data[i] += -1e9*(dsoft_masks[i]<0.05)
M.use_param[i] = (dsoft_masks[i]<0.05).float()
M_ema.use_param[i] = (dsoft_masks[i]<0.05).float()
#print(dscores[i], names[i], ' >>>>>>. what fuck ', M.use_param.view(-1), M.param_net[i])
#topk = torch.topk(torch.tensor(dscores), k=5)[1]
consistency = version_history_checker.check_history(dhard_masks)
version_history_checker.update_history(dhard_masks)
for i in range(G.mapping.c_dim):
all_sum = torch.sum(dhard_masks, dim=1)
target = torch.mode(all_sum)[0]
cur_sum = all_sum[i]
set_thr = 1.0
cond1 = (dscores[i]>=set_thr)
crit = (cur_sum>1 and cur_sum<=target)
#cond2 = (dscores[i]>=0.6 and cur_sum>1 and cur_sum<=target and (i in list(topk.cpu())))
cond3 = consistency[i]
should_use=True
for j in range(G.mapping.c_dim):
if dscores[j]> dscores[i] and torch.sum(torch.abs(dhard_masks[i]-dhard_masks[j]))==0 and j!=i:
should_use = False
if (cond1) and should_use and crit:
#M.param_net.data[i] = 1e9*dhard_masks[i]
#M.param_net.data[i] += -1e9*(1-dhard_masks[i])
M.target_value[i] = dhard_masks[i]
M.use_param[i] = torch.ones_like(M.use_param[i])
#M_ema.param_net.data[i] = 1e9*dhard_masks[i]
#M_ema.param_net.data[i] += -1e9*(1-dhard_masks[i])
M_ema.target_value[i] = dhard_masks[i]
M_ema.use_param[i] = torch.ones_like(M.use_param[i])
print('>>>>>> replace classss ', names[i], ' ', dscores[i], ' ', M.target_value[i], ' << consistency ', consistency[i])
column_consistency = column_history_cheker.check_history(dhard_masks)
column_history_cheker.update_history(dhard_masks)
for j in range(G.mapping.i_dim):
cur_soft = dsoft_masks[:,j]
cur_hard = dhard_masks[:,j]
act = cur_soft[cur_hard==1]
deact = cur_soft[cur_hard==0]
cur_sum = torch.sum(cur_hard)
if (act.mean()>0.9 and act.min()>0.6 and cur_sum>1 and cur_tick==5):
#M.param_net.data[:,j] = cur_hard*19
#M.param_net.data[:,j] += -1e19*(1-cur_hard)
M.use_param[:,j] = torch.ones_like(M.use_param[:,j])
M.target_value[:,j] = cur_hard
#M_ema.param_net.data[:,j] = cur_hard
#M_ema.param_net.data[:,j] += -1e19*(1-cur_hard)
M_ema.target_value[:,j] = cur_hard
M_ema.use_param[:,j] = torch.ones_like(M.use_param[:,j])
print('>>>>> replace columns ', j, ' ', M.target_value[:,j].view(-1), ' ', column_consistency[j])
if cur_tick == use_best_binary:
best_mask = binary_mask_checker.check()
if best_mask is not None:
M.use_param = torch.ones_like(M.use_param)
M.target_value = best_mask
M_ema.use_param = torch.ones_like(M.use_param)
M_ema.target_value = best_mask
if (cur_tick % 5 ==0 and cur_tick>0) or cur_tick == use_best_binary:
for param in M.parameters():
torch.distributed.broadcast(param.data, 0)
torch.distributed.broadcast(M.use_param, 0)
torch.distributed.broadcast(M_ema.use_param, 0)
torch.distributed.broadcast(M.target_value, 0)
torch.distributed.broadcast(M_ema.target_value, 0)
for param in M_ema.parameters():
torch.distributed.broadcast(param.data, 0)
torch.distributed.barrier()
#print(M.use_param, ' >>>>>>> m M use_oaramssss bripdcatss ')
# Save network snapshot.
snapshot_pkl = None
snapshot_data = None
if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0) and cur_tick>0:
snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs))
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe), ('M', M), ('M_ema', M_ema)]:
if module is not None:
if num_gpus > 1:
misc.check_ddp_consistency(module, ignore_regex=r'.*\.w_avg')
module = copy.deepcopy(module).eval().requires_grad_(False).cpu()
snapshot_data[name] = module
del module # conserve memory
snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:06d}.pkl')
if rank == 0:
#pass
with open(snapshot_pkl, 'wb') as f:
pickle.dump(snapshot_data, f)
# Evaluate metrics.
if (snapshot_data is not None) and (len(metrics) > 0):
if rank == 0:
print('Evaluating metrics...')
for metric in metrics:
result_dict = metric_main.calc_metric(metric=metric, G=snapshot_data['G_ema'], M=snapshot_data['M_ema'],
dataset_kwargs=training_set_kwargs, num_gpus=num_gpus, rank=rank, device=device)
if rank == 0:
metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=snapshot_pkl)
stats_metrics.update(result_dict.results)
del snapshot_data # conserve memory
# Collect statistics.
for phase in phases:
value = []
if (phase.start_event is not None) and (phase.end_event is not None):
phase.end_event.synchronize()
value = phase.start_event.elapsed_time(phase.end_event)
training_stats.report0('Timing/' + phase.name, value)
stats_collector.update()
stats_dict = stats_collector.as_dict()
# Update logs.
timestamp = time.time()
if stats_jsonl is not None:
fields = dict(stats_dict, timestamp=timestamp)
stats_jsonl.write(json.dumps(fields) + '\n')
stats_jsonl.flush()
if stats_tfevents is not None:
global_step = int(cur_nimg / 1e3)
walltime = timestamp - start_time
for name, value in stats_dict.items():
stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime)
for name, value in stats_metrics.items():
stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime)
stats_tfevents.flush()
if progress_fn is not None:
progress_fn(cur_nimg // 1000, total_kimg)
# Update state.
if False and cur_tick%5==0:
for paramgroup in M_opt.param_groups:
paramgroup['lr'] = paramgroup['lr'] * 0.1
print('>>>>>>>LR decay <<<<<<< %.7f' % paramgroup['lr'])
cur_tick += 1
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - tick_end_time
if done:
break
# Done.
if rank == 0:
print()
print('Exiting...')
#----------------------------------------------------------------------------
|