File size: 41,855 Bytes
bc2c9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import os
import time
import copy
import json
import dill as pickle
import psutil
import PIL.Image
import numpy as np
import torch
import dnnlib
from torch_utils import misc
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import grid_sample_gradfix
from torchvision.utils import save_image
import math
import legacy
from metrics import metric_main
import torch.nn.functional as F
np.set_printoptions(formatter={'float': '{:0.2f}'.format})
from collections import Counter
#----------------------------------------------------------------------------

class SparsestVector:
    def __init__(self):
        self.sparsest_vector = None

    def add(self, vector):
        """Add a vector, only keeping it if it is sparser than the current stored one."""
        if self.sparsest_vector is None:
            self.sparsest_vector = vector
        else:
            current_nonzero = torch.count_nonzero(self.sparsest_vector).item()
            new_nonzero = torch.count_nonzero(vector).item()

            # Keep the new vector only if it's sparser (fewer non-zero elements)
            if new_nonzero < current_nonzero:
                self.sparsest_vector = vector

    def check(self):
        """Returns the sparsest vector currently stored."""
        return self.sparsest_vector


def setup_snapshot_image_grid(training_set, random_seed=0):
    rnd = np.random.RandomState(random_seed)
    gw = int(np.clip(768*2 // training_set.image_shape[2], 7, 32))
    gh = int(np.clip(432*2 // training_set.image_shape[1], 4, 32))

    # No labels => show random subset of training samples.
    if not training_set.has_labels:
        all_indices = list(range(len(training_set)))
        rnd.shuffle(all_indices)
        grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)]
        label_groups = []
    else:
        # Group training samples by label.
        label_groups = dict() # label => [idx, ...]
        for idx in range(len(training_set)):
            label = tuple(training_set.get_details(idx).raw_label.flat[::-1])
            if label not in label_groups:
                label_groups[label] = []
            label_groups[label].append(idx)
        if training_set.image_shape[1] < 256:
            gw *= 2
        gh *= len(label_groups)
        #gw = min(gw, 16)
        # Reorder.
        label_order = sorted(label_groups.keys())
        for label in label_order:
            rnd.shuffle(label_groups[label])

        # Organize into grid.
        grid_indices = []
        for y in range(len(label_groups)):
            label = label_order[y % len(label_order)]
            indices = label_groups[label]
            grid_indices += [indices[x % len(indices)] for x in range(gw)]
            label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))]

    # Load data.
    images, labels = zip(*[training_set[i] for i in grid_indices])
    return (gw, len(label_groups)), np.stack(images), np.stack(labels), len(label_groups)

#----------------------------------------------------------------------------

def save_image_grid(img, fname, drange, grid_size):
    lo, hi = drange
    img = np.asarray(img, dtype=np.float32)
    img = (img - lo) * (255 / (hi - lo))
    img = np.rint(img).clip(0, 255).astype(np.uint8)

    gw, gh = grid_size
    _N, C, H, W = img.shape
    img = img.reshape(gh, gw, C, H, W)
    img = img.transpose(0, 3, 1, 4, 2)
    img = img.reshape(gh * H, gw * W, C)

    assert C in [1, 3]
    if C == 1:
        PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
    if C == 3:
        PIL.Image.fromarray(img, 'RGB').save(fname)


class VectorHistoryChecker:
    def __init__(self, b, d, m):
        self.b = b
        self.d = d
        self.m = m
        self.history = torch.ones(b, d, m)*1e99  # Initialize history with zeros
        self.current_index = 0

    def update_history(self, new_version):
        """Update history with the new version of the vector."""
        self.history[:, :, self.current_index] = new_version.cpu()
        self.current_index = (self.current_index + 1) % self.m

    def check_history(self, input_version):
        """Check if the input version matches all m history versions for each row."""
        consistency = torch.ones(self.b, dtype=torch.bool)  # Initialize as True for all rows
        for i in range(self.m):
            # Check row-wise equality across the history
            consistency &= torch.all(self.history[:, :, i] == input_version.cpu(), dim=1)
        return consistency

    def get_history(self):
        """Get the current history."""
        return self.history

class ColumnHistoryChecker:
    def __init__(self, b, d, m):
        self.b = b
        self.d = d
        self.m = m
        self.history = torch.ones(b, d, m)*1e99  # Initialize history with zeros
        self.current_index = 0

    def update_history(self, new_version):
        """Update history with the new version of the vector."""
        self.history[:, :, self.current_index] = new_version.cpu()
        self.current_index = (self.current_index + 1) % self.m

    def check_history(self, input_version):
        """Check if the input version matches all m history versions for each row."""
        consistency = torch.ones(self.d, dtype=torch.bool)  # Initialize as True for all rows
        for i in range(self.m):
            # Check column-wise equality across the history
            consistency &= torch.all(self.history[:, :, i] == input_version.cpu(), dim=0)
        return consistency

    def get_history(self):
        """Get the current history."""
        return self.history
#----------------------------------------------------------------------------

def training_loop(
    run_dir                 = '.',      # Output directory.
    training_set_kwargs     = {},       # Options for training set.
    data_loader_kwargs      = {},       # Options for torch.utils.data.DataLoader.
    G_kwargs                = {},       # Options for generator network.
    D_kwargs                = {},       # Options for discriminator network.
    G_opt_kwargs            = {},       # Options for generator optimizer.
    D_opt_kwargs            = {},       # Options for discriminator optimizer.
    augment_kwargs          = None,     # Options for augmentation pipeline. None = disable.
    loss_kwargs             = {},       # Options for loss function.
    metrics                 = [],       # Metrics to evaluate during training.
    random_seed             = 0,        # Global random seed.
    num_gpus                = 1,        # Number of GPUs participating in the training.
    rank                    = 0,        # Rank of the current process in [0, num_gpus[.
    batch_size              = 4,        # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus.
    batch_gpu               = 4,        # Number of samples processed at a time by one GPU.
    ema_kimg                = 10,       # Half-life of the exponential moving average (EMA) of generator weights.
    ema_rampup              = None,     # EMA ramp-up coefficient.
    G_reg_interval          = 4,        # How often to perform regularization for G? None = disable lazy regularization.
    D_reg_interval          = 16,       # How often to perform regularization for D? None = disable lazy regularization.
    augment_p               = 0,        # Initial value of augmentation probability.
    ada_target              = None,     # ADA target value. None = fixed p.
    ada_interval            = 4,        # How often to perform ADA adjustment?
    ada_kimg                = 500,      # ADA adjustment speed, measured in how many kimg it takes for p to increase/decrease by one unit.
    total_kimg              = 25000,    # Total length of the training, measured in thousands of real images.
    kimg_per_tick           = 4,        # Progress snapshot interval.
    image_snapshot_ticks    = 50,       # How often to save image snapshots? None = disable.
    network_snapshot_ticks  = 50,       # How often to save network snapshots? None = disable.
    resume_pkl              = None,     # Network pickle to resume training from.
    cudnn_benchmark         = True,     # Enable torch.backends.cudnn.benchmark?
    allow_tf32              = False,    # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32?
    abort_fn                = None,     # Callback function for determining whether to abort training. Must return consistent results across ranks.
    progress_fn             = None,     # Callback function for updating training progress. Called for all ranks.
    lambda_sparse           = None,
    lambda_entropy          = None,
    lambda_ortho            = None,
    lambda_colvar            = None,
    lambda_rowvar            = None,
    lambda_equal          = None,
    lambda_epsilon = None,
    lambda_path=None,
    g_iter=None,
    temperature=1,
):
    # Initialize.
    start_time = time.time()
    device = torch.device('cuda', rank)
    np.random.seed(random_seed * num_gpus + rank)
    torch.manual_seed(random_seed * num_gpus + rank)
    torch.backends.cudnn.benchmark = cudnn_benchmark    # Improves training speed.
    torch.backends.cuda.matmul.allow_tf32 = allow_tf32  # Allow PyTorch to internally use tf32 for matmul
    torch.backends.cudnn.allow_tf32 = allow_tf32        # Allow PyTorch to internally use tf32 for convolutions
    conv2d_gradfix.enabled = True                       # Improves training speed.
    grid_sample_gradfix.enabled = True                  # Avoids errors with the augmentation pipe.

    # Load training set.
    if rank == 0:
        print('Loading training set...')
    training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) # subclass of training.dataset.Dataset
    training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed)
    training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs))
    if rank == 0:
        print()
        print('Num images: ', len(training_set))
        print('Image shape:', training_set.image_shape)
        print('Label shape:', training_set.label_shape)
        print()

    # Construct networks.
    if rank == 0:
        print('Constructing networks...')
    common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution, img_channels=training_set.num_channels)
    G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
    D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
    G_ema = copy.deepcopy(G).eval()

    M_kwargs = dnnlib.EasyDict(class_name='training.networks.ConceptMaskNetwork', c_dim=training_set.label_dim, i_dim=G_kwargs.mapping_kwargs.i_dim)
    M = dnnlib.util.construct_class_by_name(**M_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
    M_ema = copy.deepcopy(M).eval()

    # Resume from existing pickle.
    if (resume_pkl is not None) and (rank == 0):
        print(f'Resuming from "{resume_pkl}"')
        with dnnlib.util.open_url(resume_pkl) as f:
            resume_data = legacy.load_network_pkl(f)
        for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('M', M), ('M_ema', M_ema)]:
            misc.copy_params_and_buffers(resume_data[name], module, require_all=False)

    # Print network summary tables.
    if rank == 0:
        z = torch.empty([batch_gpu, G.z_dim], device=device)
        c = torch.empty([batch_gpu, G.c_dim], device=device)
        m = torch.empty([batch_gpu, G_kwargs.mapping_kwargs.i_dim], device=device)
        img = misc.print_module_summary(G, [z, m])
        misc.print_module_summary(D, [img, c])

    # Setup augmentation.
    if rank == 0:
        print('Setting up augmentation...')
    augment_pipe = None
    ada_stats = None
    if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None):
        augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
        augment_pipe.p.copy_(torch.as_tensor(augment_p))
        if ada_target is not None:
            ada_stats = training_stats.Collector(regex='Loss/signs/real')

    # Distribute across GPUs.
    if rank == 0:
        print(f'Distributing across {num_gpus} GPUs...')
    ddp_modules = dict()
    for name, module in [('G_mapping', G.mapping), ('G_synthesis', G.synthesis), ('D', D), (None, G_ema), ('augment_pipe', augment_pipe),
                         ('M', M), (None, M_ema)
                         ]:
        if (num_gpus > 1) and (module is not None) and len(list(module.parameters())) != 0:
            module.requires_grad_(True)
            module = torch.nn.parallel.DistributedDataParallel(module, device_ids=[device], broadcast_buffers=False)
            module.requires_grad_(False)
        if name is not None:
            ddp_modules[name] = module

    # Setup training phases.
    if rank == 0:
        print('Setting up training phases...')
    loss = dnnlib.util.construct_class_by_name(device=device, **ddp_modules, **loss_kwargs) # subclass of training.loss.Loss
    phases = []
    for name, module, opt_kwargs, reg_interval in [('G', G, G_opt_kwargs, G_reg_interval), ('D', D, D_opt_kwargs, D_reg_interval)]:
        if reg_interval is None:
            opt = dnnlib.util.construct_class_by_name(params=module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
            phases += [dnnlib.EasyDict(name=name+'both', module=module, opt=opt, interval=1)]
        else: # Lazy regularization.
            mb_ratio = reg_interval / (reg_interval + 1)
            opt_kwargs = dnnlib.EasyDict(opt_kwargs)
            opt_kwargs.lr = opt_kwargs.lr * mb_ratio
            opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
            opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
            phases += [dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)]
            if name == 'G' and g_iter>0:
                phases += ([dnnlib.EasyDict(name=name + 'main', module=module, opt=opt, interval=1)] * g_iter)
            phases += [dnnlib.EasyDict(name=name+'reg', module=module, opt=opt, interval=reg_interval)]


    for name, module, opt_kwargs, reg_interval in [('M', M, G_opt_kwargs, G_reg_interval)]:
        mb_ratio = reg_interval / (reg_interval + 1)
        opt_kwargs = dnnlib.EasyDict(opt_kwargs)
        opt_kwargs.lr = opt_kwargs.lr * mb_ratio
        opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
        #M_opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
        #M_opt = torch.optim.SGD(module.parameters(), lr=0.01, momentum=0.9)
        print(opt_kwargs.betas, ' >>>>>>>> opt kwargs ssss')
        M_opt = torch.optim.AdamW(module.parameters(), lr=opt_kwargs.lr, betas=(0.9, 0.999), eps=opt_kwargs.eps,
                                  weight_decay=0.01, amsgrad=False)


    for phase in phases:
        phase.start_event = None
        phase.end_event = None
        if rank == 0:
            phase.start_event = torch.cuda.Event(enable_timing=True)
            phase.end_event = torch.cuda.Event(enable_timing=True)

    # Export sample images.
    grid_size = None
    grid_z = None
    grid_c = None
    if rank == 0:
        print('Exporting sample images...')
        grid_size, images, labels, num_domains = setup_snapshot_image_grid(training_set=training_set)
        save_image_grid(images, os.path.join(run_dir, 'reals.jpg'), drange=[0,255], grid_size=grid_size)
        if labels.shape[1] > 0:
            grid_z = []
            for i in range(grid_size[1]//num_domains):
                random_z = (torch.randn(grid_size[0], G.z_dim, device=device))
                for j in range(num_domains):
                    grid_z.append(random_z)
            grid_z = torch.cat(grid_z, 0).split(batch_gpu)
        else:
            grid_z = torch.randn([labels.shape[0], G.z_dim], device=device).split(batch_gpu)
        grid_c = torch.from_numpy(labels).to(device)
        grid_c = grid_c.split(batch_gpu)
        images = torch.cat([G_ema(z=z, c=M_ema(c), noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)]).numpy()
        save_image_grid(images, os.path.join(run_dir, 'fakes_init.jpg'), drange=[-1,1], grid_size=grid_size)

    # Initialize logs.
    if rank == 0:
        print('Initializing logs...')
    stats_collector = training_stats.Collector(regex='.*')
    stats_metrics = dict()
    stats_jsonl = None
    stats_tfevents = None
    if rank == 0:
        stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt')
        try:
            import torch.utils.tensorboard as tensorboard
            stats_tfevents = tensorboard.SummaryWriter(run_dir)
        except ImportError as err:
            print('Skipping tfevents export:', err)

    # Train.
    if rank == 0:
        print(f'Training for {total_kimg} kimg...')
        print()
    cur_nimg = 0
    cur_tick = 0
    tick_start_nimg = cur_nimg
    tick_start_time = time.time()
    maintenance_time = tick_start_time - start_time
    init_temperature = 1.0
    min_temperature = 0.5
    batch_idx = 0

    if progress_fn is not None:
        progress_fn(0, total_kimg)


    names = ['Red 0', 'Red 1', 'Green 0', 'Green 1', 'Green 2', 'Green 3', 'Green 4', 'Green 5', 'Green 6', 'Green 7',
             'Green 8', 'Green 9', 'Red 2', 'Blue 0', 'Blue 1', 'Blue 2', 'Blue 3', 'Blue 4', 'Blue 5', 'Blue 6', 'Blue 7', 'Blue 8', 'Blue 9',
             'Red 3', 'Red 4', 'Red 5', 'Red 6', 'Red 7', 'Red 8', 'Red 9'
             ]
    if G.mapping.c_dim == 30:
        names = [
        'Blue 0', 'Blue 1', 'Blue 2', 'Blue 3', 'Blue 4', 'Blue 5', 'Blue 6', 'Blue 7', 'Blue 8', 'Blue 9',
        'Green 0', 'Green 1', 'Green 2', 'Green 3', 'Green 4', 'Green 5', 'Green 6', 'Green 7', 'Green 8', 'Green 9',
            'Red 0', 'Red 1', 'Red 2','Red 3', 'Red 4', 'Red 5', 'Red 6', 'Red 7', 'Red 8', 'Red 9'
             ]
    elif G.mapping.c_dim == 8:
        names = [
            'Bald NoSmile Male', 'Bald Smile Male', 'Black NoSmile Female', 'Black NoSmile Male', 'Black Smile Female', 'Black Smile Male',
            'Blond NoSmile Female', 'Blond Smile Female'

        ]

    #names = ['Green Apple', 'Green Banana', 'Green Pear', 'Red Apple', 'Red Pear', 'Red Strawberry', 'Yellow Banana', 'Yellow Pineapple', 'Yellow StarFruit']
    #names = ['Green Apple', 'Green Banana', 'Green Pear', 'Red Apple', 'Red Pear', 'Red Strawberry', 'Yellow Banana', 'Yellow Pineapple', 'Yellow StarFruit']
    #names = ['Yellow 1', 'Purple 1', 'Red 1', 'Yellow 2', 'White 1', 'White 2', 'Red 2', 'Purple 2']
    version_history_checker = VectorHistoryChecker(G.mapping.c_dim, G.mapping.i_dim, 3)
    column_history_cheker = ColumnHistoryChecker(G.mapping.c_dim, G.mapping.i_dim, 3)
    binary_mask_checker = SparsestVector()
    use_best_binary = 10
    while True:
        ready = False
        cur_kimg = cur_nimg / 1000.0
        should_restart = (cur_tick % 40 ==0)
        if cur_tick<=5:
            cur_lambda_rowvar = lambda_rowvar
            cur_lambda_colvar = 0
            cur_lambda_sparse = lambda_sparse
            cur_entropy_thr = 0.6
            cur_lambda_equal = 0
            cur_lambda_entropy = lambda_entropy
        else:
            cur_lambda_rowvar = 0
            cur_lambda_colvar = lambda_colvar
            cur_lambda_sparse = lambda_sparse
            cur_entropy_thr = 0.9
            cur_lambda_equal = lambda_equal
            cur_lambda_entropy = lambda_entropy

        cur_lambda_ortho = lambda_ortho
        cur_temperature = 1.

        # Fetch training data.
        with torch.autograd.profiler.record_function('data_fetch'):
            phase_real_img, phase_real_c = next(training_set_iterator)
            phase_real_img = (phase_real_img.to(device).to(torch.float32) / 127.5 - 1).split(batch_gpu)
            phase_real_c = phase_real_c.to(device).split(batch_gpu)
            all_gen_z = torch.randn([len(phases) * batch_size, G.z_dim], device=device)
            all_gen_z = [phase_gen_z.split(batch_gpu) for phase_gen_z in all_gen_z.split(batch_size)]
            all_gen_c = [training_set.get_label(np.random.randint(len(training_set))) for _ in range(len(phases) * batch_size)]
            """
            all_gen_c = []
            for ta in tmp_all_gen_c:
                all_gen_c.append(F.one_hot(torch.randint(0, 30, (1,)), num_classes=30).float().to(device).squeeze().cpu().numpy())
            tmp_all_gen_c = torch.from_numpy(np.stack(tmp_all_gen_c)).to(device)
            print(all_gen_c.size(), ' >>>>>>>>>>>>>>>>> all genc ',  tmp_all_gen_c.size(), ' >>>>>>>>>>>>>>>>> tmp all genc ')
            """
            all_gen_c = torch.from_numpy(np.stack(all_gen_c)).pin_memory().to(device)
            all_gen_c = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen_c.split(batch_size)]


        loss_dict = {}
        # Execute training phases.

        gmain_count = 0
        for phase, phase_gen_z, phase_gen_c in zip(phases, all_gen_z, all_gen_c):
            if batch_idx % phase.interval != 0:
                continue

            if phase.name == 'Gmain':
                gmain_count += 1

            only1G = ((cur_tick>use_best_binary) and (gmain_count>1) and (phase.name == 'Gmain'))
            if only1G:
                continue

            # Initialize gradient accumulation.
            if phase.start_event is not None:
                phase.start_event.record(torch.cuda.current_stream(device))
            phase.opt.zero_grad(set_to_none=True)
            phase.module.requires_grad_(True)
            M_opt.zero_grad(set_to_none=True)
            if phase.name == 'Gmain':
                M.requires_grad_(True)

            # Accumulate gradients over multiple rounds.
            for round_idx, (real_img, real_c, gen_z, gen_c) in enumerate(zip(phase_real_img, phase_real_c, phase_gen_z, phase_gen_c)):
                sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1)
                gain = phase.interval
                tmp_loss_dict = loss.accumulate_gradients(phase=phase.name, real_img=real_img, real_c=real_c, gen_z=gen_z, gen_c=gen_c, sync=sync, gain=gain,
                                          lambda_sparse=cur_lambda_sparse, lambda_entropy=cur_lambda_entropy, lambda_ortho=cur_lambda_ortho, lambda_path=lambda_path,
                                                          lambda_epsilon=lambda_epsilon, lambda_colvar=cur_lambda_colvar, lambda_rowvar=cur_lambda_rowvar,
                                                          lambda_equal=cur_lambda_equal, temperature=cur_temperature, entropy_thr=cur_entropy_thr,
                                                          )
                loss_dict.update(tmp_loss_dict)


            # Update weights.
            phase.module.requires_grad_(False)
            M.requires_grad_(False)
            with torch.autograd.profiler.record_function(phase.name + '_opt'):
                for param in phase.module.parameters():
                    if param.grad is not None:
                        misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
                phase.opt.step()

                for param in M.parameters():
                    if param.grad is not None:
                        misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
                M_opt.step()

            if phase.end_event is not None:
                phase.end_event.record(torch.cuda.current_stream(device))

        # Update G_ema.
        with torch.autograd.profiler.record_function('Gema'):
            ema_nimg = ema_kimg * 1000
            if ema_rampup is not None:
                ema_nimg = min(ema_nimg, cur_nimg * ema_rampup)
            ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8))
            for p_ema, p in zip(G_ema.parameters(), G.parameters()):
                p_ema.copy_(p.lerp(p_ema, ema_beta))
            for b_ema, b in zip(G_ema.buffers(), G.buffers()):
                b_ema.copy_(b)

            #ema_beta = 0.9
            for p_ema, p in zip(M_ema.parameters(), M.parameters()):
                p_ema.copy_(p.lerp(p_ema, ema_beta))
            for b_ema, b in zip(M_ema.buffers(), M.buffers()):
                b_ema.copy_(b)

        # Update state.
        cur_nimg += batch_size
        batch_idx += 1

        # Execute ADA heuristic.
        if (ada_stats is not None) and (batch_idx % ada_interval == 0):
            ada_stats.update()
            adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (ada_kimg * 1000)
            augment_pipe.p.copy_((augment_pipe.p + adjust).max(misc.constant(0, device=device)))

        # Perform maintenance tasks once per tick.
        done = (cur_nimg >= total_kimg * 1000)
        if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000):
            continue

        # Print status line, accumulating the same information in stats_collector.
        tick_end_time = time.time()
        fields = []
        fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"]
        fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"]
        fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"]
        fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"]
        fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"]
        #fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"]
        #fields += [f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"]
        #fields += [f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"]
        fields += [f"sparse {loss_dict['loss_sparse']:.3f}"]
        fields += [f"entropy {loss_dict['loss_entropy']:.3f}"]
        fields += [f"path {loss_dict['loss_path']:.3f}"]
        fields += [f"equal {loss_dict['loss_equal']:.3f}"]
        fields += [f"rowvar {loss_dict['loss_rowvar']:.3f}"]
        fields += [f"colvar {loss_dict['loss_colvar']:.3f}"]
        fields += [f"lambda_sparse {cur_lambda_sparse:.3f}"]
        fields += [f"lambda_entropy {cur_lambda_entropy:.3f}"]
        fields += [f"lambda_rowvar {cur_lambda_rowvar:.3f}"]
        fields += [f"lambda_colvar {cur_lambda_colvar:.3f}"]
        fields += [f"lambda_path {lambda_path:.3f}"]
        fields += [f"lambda_equal {lambda_equal:.3f}"]
        fields += [f"thr {cur_entropy_thr:.3f}"]
        torch.cuda.reset_peak_memory_stats()
        #fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"]
        training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60))
        training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60))
        if rank == 0:
            print(' '.join(fields))

        # Check for abort.
        if (not done) and (abort_fn is not None) and abort_fn():
            done = True
            if rank == 0:
                print()
                print('Aborting...')


        # Save image snapshot.
        if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0):
            wss = torch.cat([G_ema.mapping(z,M_ema(c)) for z,c in zip(grid_z, grid_c)])
            images = torch.cat([G_ema(z=z, c=M_ema(c), noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)])

            def normalize_2nd_moment(x, dim=1, eps=1e-8):
                return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()

            cs = []
            for c in grid_c:
                cs.append(c.argmax(dim=1))
            cs = torch.cat(cs, 0).view(G.mapping.c_dim, -1)
            tmp_imgs = images.reshape(G.mapping.c_dim, -1, images.shape[1], images.shape[2], images.shape[3])
            images = images.numpy()
            wss = wss.reshape(G.mapping.c_dim, -1, wss.shape[1], wss.shape[2])
            print(cs.size(), tmp_imgs.shape, wss.shape, ' >>>>>cs size tmp_imgs size <<<<<<<<')
            save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg//1000:06d}.jpg'), drange=[-1,1], grid_size=grid_size)
            try:
                print(G_ema.mapping.importance0, G_ema.mapping.importance1)
            except:
                pass
            all_masks = []
            with torch.no_grad():
                cin = torch.arange(G.mapping.c_dim, device=device)
                cin = F.one_hot(cin, num_classes=G.mapping.c_dim).float()

                all_logit = M(cin)
                all_soft_mask = ((all_logit))
                all_hard_mask = (all_soft_mask > 0.5).float()

                for i in range(G.mapping.c_dim):
                    print('%40s' % names[i], '    ', all_soft_mask[i].cpu().numpy())
                for i in range(G.mapping.c_dim):
                    print('%40s' % names[i], '    ', all_hard_mask[i].cpu().numpy().astype(np.uint8))

                all_logit = M_ema(cin)
                all_soft_mask = ((all_logit))
                all_hard_mask = (all_soft_mask > 0.5).float()

                for i in range(G.mapping.c_dim):
                    print('%40s' % names[i], '    ', all_soft_mask[i].cpu().numpy())
                for i in range(G.mapping.c_dim):
                    print('%40s' % names[i], '    ', all_hard_mask[i].cpu().numpy().astype(np.uint8))


                dscores = []
                dhard_masks = all_hard_mask.clone()
                dsoft_masks = all_soft_mask.clone()
                for i in range(G.mapping.c_dim):
                    cur_imgs = tmp_imgs[i].to(device)
                    cur_c = F.one_hot(torch.tensor([i]*cur_imgs.size(0), device=device), num_classes=G.mapping.c_dim).float().to(device)
                    d_out = D(cur_imgs, cur_c)
                    d_out = F.softplus(d_out)
                    print('%40s mean: %.2f min: %.2f max: %.2f' % (names[i], d_out.mean().item(), d_out.min().item(), d_out.max().item()))
                    dscores.append(d_out.min().item())

                #eval_mask = M(cin, eval=True)
                #for i in range(G.mapping.c_dim):
                #    print('%10s' % names[i], '    ', eval_mask[i].cpu().numpy().astype(np.uint8))

                def normalize_2nd_moment(x, dim=1, eps=1e-8):
                    return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()

                def get_onehot(y):
                    shape = y.size()
                    _, ind = y.max(dim=-1)
                    y_hard = torch.zeros_like(y).view(-1, shape[-1])
                    y_hard.scatter_(1, ind.view(-1, 1), 1)
                    y_hard = y_hard.view(*shape)
                    return y_hard


                def no_same_rows(x):
                    has = False
                    for i in range(len(x)):
                        for j in range(i+1, len(x)):
                            if torch.allclose(x[i], x[j]):
                                has = True
                    return not has

                def has_enough_concepts(x):
                    has = True
                    for i in range(len(x)):
                        if torch.sum(x[i])<=1:
                            has = False
                    return has


                if no_same_rows(dhard_masks) and has_enough_concepts(dhard_masks):
                    print('')
                    print('>>>>>>>>>>>>> This version can be used <<<<<<<<<<<<<<')
                    print('')
                    ready = True
                    binary_mask_checker.add(dhard_masks)

                try:
                    best_mask = binary_mask_checker.check()
                    for i in range(G.mapping.c_dim):
                        print('%40s' % names[i], '    ', best_mask[i].cpu().numpy().astype(np.uint8), '  best')
                except:
                    pass



                masks = all_soft_mask
                hard_masks = all_hard_mask
                for i in range(G.mapping.i_dim):
                    cur_i_imgs = []
                    sorted_index = np.argsort(masks[:, i].cpu().numpy(), axis=0)[::-1]
                    for j in sorted_index:
                        if hard_masks[j, i] == 1:
                            cur_i_imgs.append(tmp_imgs[j])
                    if len(cur_i_imgs) > 0:
                        cur_i_imgs = torch.cat(cur_i_imgs, 0)
                        save_image(cur_i_imgs, os.path.join(run_dir, f'concept_{cur_nimg // 1000:06d}_{i}.jpg'),
                                       nrow=grid_size[0], normalize=True, range=(-1, 1))

            if True:
                for i in range(G.mapping.c_dim):
                    if False:
                        M.param_net.data[i] += -1e9*(dsoft_masks[i]<0.05)
                        M_ema.param_net.data[i] += -1e9*(dsoft_masks[i]<0.05)
                        M.use_param[i] = (dsoft_masks[i]<0.05).float()
                        M_ema.use_param[i] = (dsoft_masks[i]<0.05).float()
                        #print(dscores[i], names[i], ' >>>>>>. what fuck ', M.use_param.view(-1), M.param_net[i])


                #topk = torch.topk(torch.tensor(dscores), k=5)[1]
                consistency = version_history_checker.check_history(dhard_masks)
                version_history_checker.update_history(dhard_masks)

                for i in range(G.mapping.c_dim):
                    all_sum = torch.sum(dhard_masks, dim=1)
                    target = torch.mode(all_sum)[0]
                    cur_sum = all_sum[i]

                    set_thr = 1.0
                    cond1 = (dscores[i]>=set_thr)
                    crit = (cur_sum>1 and cur_sum<=target)
                    #cond2 = (dscores[i]>=0.6 and cur_sum>1 and cur_sum<=target and (i in list(topk.cpu())))
                    cond3 = consistency[i]


                    should_use=True
                    for j in range(G.mapping.c_dim):
                        if dscores[j]> dscores[i] and torch.sum(torch.abs(dhard_masks[i]-dhard_masks[j]))==0 and j!=i:
                            should_use =  False

                    if (cond1) and should_use and crit:
                        #M.param_net.data[i] = 1e9*dhard_masks[i]
                        #M.param_net.data[i] += -1e9*(1-dhard_masks[i])
                        M.target_value[i] = dhard_masks[i]
                        M.use_param[i] = torch.ones_like(M.use_param[i])

                        #M_ema.param_net.data[i] = 1e9*dhard_masks[i]
                        #M_ema.param_net.data[i] += -1e9*(1-dhard_masks[i])
                        M_ema.target_value[i] = dhard_masks[i]
                        M_ema.use_param[i] = torch.ones_like(M.use_param[i])
                        print('>>>>>> replace classss ', names[i], '   ', dscores[i], '    ', M.target_value[i], ' << consistency ', consistency[i])



                column_consistency = column_history_cheker.check_history(dhard_masks)
                column_history_cheker.update_history(dhard_masks)

                for j in range(G.mapping.i_dim):
                    cur_soft = dsoft_masks[:,j]
                    cur_hard = dhard_masks[:,j]
                    act = cur_soft[cur_hard==1]
                    deact = cur_soft[cur_hard==0]
                    cur_sum = torch.sum(cur_hard)
                    if (act.mean()>0.9 and act.min()>0.6 and cur_sum>1 and cur_tick==5):
                        #M.param_net.data[:,j] = cur_hard*19
                        #M.param_net.data[:,j] += -1e19*(1-cur_hard)
                        M.use_param[:,j] = torch.ones_like(M.use_param[:,j])
                        M.target_value[:,j] = cur_hard

                        #M_ema.param_net.data[:,j] = cur_hard
                        #M_ema.param_net.data[:,j] += -1e19*(1-cur_hard)
                        M_ema.target_value[:,j] = cur_hard
                        M_ema.use_param[:,j] = torch.ones_like(M.use_param[:,j])
                        print('>>>>> replace columns ', j, '   ', M.target_value[:,j].view(-1), '    ', column_consistency[j])

                if cur_tick == use_best_binary:
                    best_mask = binary_mask_checker.check()
                    if best_mask is not None:
                        M.use_param = torch.ones_like(M.use_param)
                        M.target_value = best_mask
                        M_ema.use_param = torch.ones_like(M.use_param)
                        M_ema.target_value = best_mask


        if (cur_tick % 5 ==0 and cur_tick>0) or cur_tick == use_best_binary:
            for param in M.parameters():
                torch.distributed.broadcast(param.data, 0)
            torch.distributed.broadcast(M.use_param, 0)
            torch.distributed.broadcast(M_ema.use_param, 0)
            torch.distributed.broadcast(M.target_value, 0)
            torch.distributed.broadcast(M_ema.target_value, 0)
            for param in M_ema.parameters():
                torch.distributed.broadcast(param.data, 0)

            torch.distributed.barrier()

            #print(M.use_param, ' >>>>>>> m M use_oaramssss bripdcatss    ')

        # Save network snapshot.
        snapshot_pkl = None
        snapshot_data = None
        if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0) and cur_tick>0:
            snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs))
            for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe), ('M', M), ('M_ema', M_ema)]:
                if module is not None:
                    if num_gpus > 1:
                        misc.check_ddp_consistency(module, ignore_regex=r'.*\.w_avg')
                    module = copy.deepcopy(module).eval().requires_grad_(False).cpu()
                snapshot_data[name] = module
                del module # conserve memory
            snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:06d}.pkl')
            if rank == 0:
                #pass
                with open(snapshot_pkl, 'wb') as f:
                    pickle.dump(snapshot_data, f)

        # Evaluate metrics.
        if (snapshot_data is not None) and (len(metrics) > 0):
            if rank == 0:
                print('Evaluating metrics...')
            for metric in metrics:
                result_dict = metric_main.calc_metric(metric=metric, G=snapshot_data['G_ema'], M=snapshot_data['M_ema'],
                    dataset_kwargs=training_set_kwargs, num_gpus=num_gpus, rank=rank, device=device)
                if rank == 0:
                    metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=snapshot_pkl)
                stats_metrics.update(result_dict.results)
        del snapshot_data # conserve memory

        # Collect statistics.
        for phase in phases:
            value = []
            if (phase.start_event is not None) and (phase.end_event is not None):
                phase.end_event.synchronize()
                value = phase.start_event.elapsed_time(phase.end_event)
            training_stats.report0('Timing/' + phase.name, value)
        stats_collector.update()
        stats_dict = stats_collector.as_dict()

        # Update logs.
        timestamp = time.time()
        if stats_jsonl is not None:
            fields = dict(stats_dict, timestamp=timestamp)
            stats_jsonl.write(json.dumps(fields) + '\n')
            stats_jsonl.flush()
        if stats_tfevents is not None:
            global_step = int(cur_nimg / 1e3)
            walltime = timestamp - start_time
            for name, value in stats_dict.items():
                stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime)
            for name, value in stats_metrics.items():
                stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime)
            stats_tfevents.flush()
        if progress_fn is not None:
            progress_fn(cur_nimg // 1000, total_kimg)

        # Update state.
        if False and cur_tick%5==0:
            for paramgroup in M_opt.param_groups:
                paramgroup['lr'] = paramgroup['lr'] * 0.1
            print('>>>>>>>LR decay <<<<<<< %.7f' % paramgroup['lr'])
        cur_tick += 1
        tick_start_nimg = cur_nimg
        tick_start_time = time.time()
        maintenance_time = tick_start_time - tick_end_time
        if done:
            break

    # Done.
    if rank == 0:
        print()
        print('Exiting...')

#----------------------------------------------------------------------------