File size: 19,136 Bytes
1edf32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27d0a1
 
1edf32d
 
 
 
 
 
 
 
e27d0a1
 
 
 
 
 
 
 
 
 
 
1edf32d
 
e27d0a1
 
 
 
 
 
1edf32d
 
 
 
 
 
 
e27d0a1
 
 
 
 
 
1edf32d
 
 
 
 
 
 
e27d0a1
 
 
 
 
 
1edf32d
 
 
 
 
 
 
 
e27d0a1
 
1edf32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27d0a1
1edf32d
 
 
 
 
 
 
 
e27d0a1
1edf32d
 
 
 
 
 
 
1db8f79
1edf32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27d0a1
 
 
 
 
1edf32d
 
e27d0a1
 
1edf32d
 
 
 
 
 
 
 
 
 
e27d0a1
 
 
 
1edf32d
 
 
e27d0a1
 
1edf32d
e27d0a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1edf32d
e27d0a1
 
 
 
1edf32d
e27d0a1
 
 
 
1edf32d
e27d0a1
 
1edf32d
 
e27d0a1
 
 
 
 
1edf32d
 
 
e27d0a1
1edf32d
 
 
 
 
 
e27d0a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1edf32d
e27d0a1
 
 
 
 
1edf32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81538c
1edf32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27d0a1
 
 
 
 
 
 
 
 
 
 
1edf32d
 
 
e27d0a1
 
 
 
 
 
 
1edf32d
 
 
 
 
e27d0a1
1edf32d
 
 
e27d0a1
 
 
 
 
 
 
1edf32d
 
 
 
 
e27d0a1
1edf32d
 
 
e27d0a1
 
 
 
 
 
 
1edf32d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import os
import sys
import shutil
import importlib.util
from io import BytesIO
from ultralytics import YOLO
from PIL import Image

import torch
# ─── FORCE CPU ONLY ─────────────────────────────────────────────────────────
torch.Tensor.cuda      = lambda self, *args, **kwargs: self
torch.nn.Module.cuda   = lambda self, *args, **kwargs: self
torch.cuda.synchronize = lambda *args, **kwargs: None
torch.cuda.is_available= lambda : False
torch.cuda.device_count= lambda : 0
_orig_to = torch.Tensor.to
def _to_cpu(self, *args, **kwargs):
    new_args = []
    for a in args:
        if isinstance(a, str) and a.lower().startswith("cuda"):
            new_args.append("cpu")
        elif isinstance(a, torch.device) and a.type=="cuda":
            new_args.append(torch.device("cpu"))
        else:
            new_args.append(a)
    if "device" in kwargs:
        dev = kwargs["device"]
        if (isinstance(dev, str) and dev.lower().startswith("cuda")) or \
           (isinstance(dev, torch.device) and dev.type=="cuda"):
            kwargs["device"] = torch.device("cpu")
    return _orig_to(self, *new_args, **kwargs)
torch.Tensor.to = _to_cpu

from torch.utils.data import DataLoader as _DL
def _dl0(ds, *a, **kw):
    kw['num_workers'] = 0
    return _DL(ds, *a, **kw)
import torch.utils.data as _du
_du.DataLoader = _dl0

import cv2
import numpy as np
import streamlit as st
from argparse import Namespace

# ─── DYNAMIC IMPORT ─────────────────────────────────────────────────────────
REPO = os.path.dirname(os.path.abspath(__file__))
sys.path.append(REPO)
models_dir = os.path.join(REPO, "models")
os.makedirs(models_dir, exist_ok=True)
open(os.path.join(models_dir, "__init__.py"), "a").close()

def load_mod(name, path):
    spec = importlib.util.spec_from_file_location(name, path)
    m    = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(m)
    sys.modules[name] = m
    return m

dataset_mod = load_mod("dataset",     os.path.join(REPO, "dataset.py"))
decoder_mod = load_mod("decoder",     os.path.join(REPO, "decoder.py"))
draw_mod    = load_mod("draw_points", os.path.join(REPO, "draw_points.py"))
test_mod    = load_mod("test",        os.path.join(REPO, "test.py"))
load_mod("models.dec_net",     os.path.join(models_dir, "dec_net.py"))
load_mod("models.model_parts", os.path.join(models_dir, "model_parts.py"))
load_mod("models.resnet",      os.path.join(models_dir, "resnet.py"))
load_mod("models.spinal_net",  os.path.join(models_dir, "spinal_net.py"))

BaseDataset = dataset_mod.BaseDataset
Network     = test_mod.Network

# ─── STREAMLIT UI ───────────────────────────────────────────────────────────
st.set_page_config(layout="wide", page_title="Vertebral Compression Fracture")

st.markdown(
        """
    <div style='border: 2px solid #0080FF; border-radius: 5px; padding: 10px'>
        <h1 style='text-align: center; color: #0080FF'>
        🦴 Vertebral Compression Fracture Detection πŸ–ΌοΈ
        </h1>
    </div>
        """, unsafe_allow_html=True)
st.markdown("")
st.markdown("") 
st.markdown("")
col1, col2, col3, col4 = st.columns(4)

with col4:
    feature = st.selectbox(
        "πŸ”€ Select Feature",
        ["How to use", "AP - Detection", "LA - Image Segmetation", "Contract"],
        index=3,  # default to "AP"
        help="Choose which view to display"
    )

if feature == "How to use":
    st.markdown("## πŸ“– How to use this app")

    col1, col2, col3 = st.columns(3)

    card_style = """
        border:2px solid #00BFFF;
        border-radius:10px;
        padding:15px;
        text-align:center;
        background-color:#F0F8FF;
    """

    title_style = "color:#000f14; margin-bottom:10px;"
    body_style  = "color:#000f14; text-align:left;"

    with col1:
        st.markdown(
            f"""
            <div style="{card_style}">
                <h2 style="{title_style}">Step 1️⃣</h2>
                <p style="{body_style}">Go to <b>AP - Detection</b> or <b>LA - Image Segmentation</b></p>
                <p style="{body_style}">Select a sample image or upload your own image file.</p>
                <p style="color:#008000;"><b>βœ… Tip:</b> Best with X-ray images with clear vertebra visibility.</p>
            </div>
            """,
            unsafe_allow_html=True
        )

    with col2:
        st.markdown(
            f"""
            <div style="{card_style}">
                <h2 style="{title_style}">Step 2️⃣</h2>
                <p style="{body_style}">Press the <b>Enter</b> button.</p>
                <p style="{body_style}">The system will process your image automatically.</p>
                <p style="color:#FFA500;"><b>⏳ Note:</b> Processing time depends on image size.</p>
            </div>
            """,
            unsafe_allow_html=True
        )

    with col3:
        st.markdown(
            f"""
            <div style="{card_style}">
                <h2 style="{title_style}">Step 3️⃣</h2>
                <p style="{body_style}">See the prediction results:</p>
                <p style="{body_style}">1. Bounding boxes & landmarks (AP)</p>
                <p style="{body_style}">2. Segmentation masks (LA)</p>
            </div>
            """,
            unsafe_allow_html=True
        )

    st.markdown(" ")
    st.info("ΰΈͺΰΈ²ΰΈ‘ΰΈ²ΰΈ£ΰΈ–ΰΉ€ΰΈ₯ΰΈ·ΰΈ­ΰΈΰΈŸΰΈ΅ΰΉ€ΰΈˆΰΈ­ΰΈ£ΰΉŒΰΉ„ΰΈ”ΰΉ‰ΰΈœΰΉˆΰΈ²ΰΈ™ Select Feature ΰΉ‚ΰΈ”ΰΈ’ΰΉΰΈ•ΰΉˆΰΈ₯ΰΉˆΰΈ°ΰΈŸΰΈ΅ΰΉ€ΰΈˆΰΈ­ΰΈ£ΰΉŒΰΈˆΰΈ°ΰΈ‘ΰΈ΅ΰΈ•ΰΈ±ΰΈ§ΰΈ­ΰΈ’ΰΉˆΰΈ²ΰΈ‡ΰΈΰΈ³ΰΈΰΈ±ΰΈšΰΉƒΰΈ«ΰΉ‰ΰΈ§ΰΉˆΰΈ²ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈ’ΰΈ±ΰΈ‡ΰΉ„ΰΈ‡")

# … (any code above)

elif feature == "AP - Detection":
    uploaded = st.file_uploader("", type=["jpg", "jpeg", "png"])
    orig_w = orig_h = None
    img0 = None
    run = st.button("Enter", use_container_width=True)

    if "sample_img" not in st.session_state:
        st.session_state.sample_img = None

    with col1:
        if st.button(" 1️⃣ Example", use_container_width=True):
            st.session_state.sample_img = "image_1.jpg"
    with col2:
        if st.button(" 2️⃣ Example", use_container_width=True):
            st.session_state.sample_img = "image_2.jpg"
    with col3:
        if st.button(" 3️⃣ Example", use_container_width=True):
            st.session_state.sample_img = "image_3.jpg"

    col4, col5, col6 = st.columns(3)
    with col4:
        st.subheader("1️⃣ Upload & Run")
        sample_img = st.session_state.sample_img
        if uploaded:
            buf = uploaded.getvalue()
            arr = np.frombuffer(buf, np.uint8)
            img0 = cv2.imdecode(arr, cv2.IMREAD_COLOR)
            orig_h, orig_w = img0.shape[:2]
            st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
                     use_container_width=True)
        elif sample_img is not None:
            img_path = os.path.join(REPO, sample_img)
            img0 = cv2.imread(img_path)
            if img0 is not None:
                orig_h, orig_w = img0.shape[:2]
                st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
                         use_container_width=True)
            else:
                st.error(f"Cannot find {sample_img}")

    with col5:
        st.subheader("2️⃣ Predictions")
    with col6:
        st.subheader("3️⃣ Heatmap")

    args = Namespace(
        resume="model_30.pth",
        data_dir=os.path.join(REPO, "dataPath"),
        dataset="spinal",
        phase="test",
        input_h=1024,
        input_w=512,
        down_ratio=4,
        num_classes=1,
        K=17,
        conf_thresh=0.2,
    )
    weights_dir = os.path.join(REPO, "weights_spinal")
    os.makedirs(weights_dir, exist_ok=True)
    src_ckpt = os.path.join(REPO, "model_backup", args.resume)
    dst_ckpt = os.path.join(weights_dir, args.resume)
    if os.path.isfile(src_ckpt) and not os.path.isfile(dst_ckpt):
        shutil.copy(src_ckpt, dst_ckpt)

    if img0 is not None and run and orig_w and orig_h:
        name = (os.path.splitext(uploaded.name)[0]
                if uploaded else os.path.splitext(sample_img)[0]) + ".jpg"
        test_dir = os.path.join(args.data_dir, "data", "test")
        os.makedirs(test_dir, exist_ok=True)
        cv2.imwrite(os.path.join(test_dir, name), img0)

        orig_init = BaseDataset.__init__
        def patched_init(self, data_dir, phase,
                         input_h=None, input_w=None, down_ratio=4):
            orig_init(self, data_dir, phase, input_h, input_w, down_ratio)
            if phase == "test":
                self.img_ids = [name]
        BaseDataset.__init__ = patched_init

        with st.spinner("Running model…"):
            net = Network(args)
            net.test(args, save=True)

        out_dir = os.path.join(REPO, f"results_{args.dataset}")
        pred_file = next(
            f for f in os.listdir(out_dir)
            if f.startswith(name) and f.endswith("_pred.jpg")
        )
        txtf = os.path.join(out_dir, f"{name}.txt")
        imgf = os.path.join(out_dir, pred_file)

        # ─── Annotated predictions ─────────────────────────────────────
        ann = cv2.imread(imgf)
        txt = np.loadtxt(txtf)
        tlx, tly = txt[:,2].astype(int), txt[:,3].astype(int)
        trx, try_ = txt[:,4].astype(int), txt[:,5].astype(int)
        blx, bly = txt[:,6].astype(int), txt[:,7].astype(int)
        brx, bry = txt[:,8].astype(int), txt[:,9].astype(int)

        for x1, y1, x2, y2 in zip(tlx, tly, trx, try_):
            cv2.line(ann, (x1, y1), (x2, y2), (255,255,0), 2)

        for x1,y1,x2,y2,x3,y3,x4,y4 in zip(
            tlx, tly, trx, try_, blx, bly, brx, bry
        ):
            top_mid = np.array([(x1+x2)/2, (y1+y2)/2])
            bot_mid = np.array([(x3+x4)/2, (y3+y4)/2])
            p0 = tuple(top_mid.astype(int))
            p1 = tuple(bot_mid.astype(int))
            cv2.line(ann, p0, p1, (0,255,255), 2)

            h_before = np.linalg.norm(bot_mid - top_mid)
            h_after  = 2 * int(h_before * 0.4)
            pct      = ((h_before - h_after) / h_before * 100) - 10
            clr = (0,0,255) if pct > 40 else (
                  (0,165,255) if pct > 20 else (0,255,255))
            text_pos = (x2 + 5, y2 - 5)
            cv2.putText(
                ann, f"{pct:.0f}%", text_pos,
                cv2.FONT_HERSHEY_SIMPLEX, 0.5, clr, 2, cv2.LINE_AA
            )

        ann_resized = cv2.resize(
            ann, (orig_w, orig_h),
            interpolation=cv2.INTER_LINEAR
        )
        with col5:
            st.image(
                cv2.cvtColor(ann_resized, cv2.COLOR_BGR2RGB),
                use_container_width=True
            )

        # ─── Heatmap overlay + connecting lines ─────────────────────────
        base = cv2.imread(imgf)
        H, W = base.shape[:2]
        heat = np.zeros((H, W), np.float32)
        cts = []
        for (x1, y1), (x2, y2) in zip(zip(tlx, tly), zip(trx, try_)):
            tm = np.array([(x1 + x2)/2, (y1 + y2)/2])
            cts.append((int(tm[0]), int(tm[1])))

        for cx, cy in cts:
            blob = np.zeros_like(heat)
            blob[cy, cx] = 1.0
            heat += cv2.GaussianBlur(blob, (0,0), sigmaX=8, sigmaY=8)
        heat /= heat.max() + 1e-8
        hm8 = (heat * 255).astype(np.uint8)
        hm_c = cv2.applyColorMap(hm8, cv2.COLORMAP_JET)
        raw = cv2.imread(imgf, cv2.IMREAD_GRAYSCALE)
        raw_b = cv2.cvtColor(raw, cv2.COLOR_GRAY2BGR)
        overlay = cv2.addWeighted(raw_b, 0.6, hm_c, 0.4, 0)

        for p1, p2 in zip(cts, cts[1:]):
            cv2.line(overlay, p1, p2, (0,255,255), 2)

        # ─── Cobb‑angle original logic ────────────────────────────────
        vecs = np.diff(np.array(cts), axis=0)
        angles = np.degrees(np.arctan2(vecs[:,1], vecs[:,0]))
        idx_max = int(np.argmax(angles))
        idx_min = int(np.argmin(angles))
        cobb = abs(angles[idx_max] - angles[idx_min])

        # ─── highlight apex of curvature ─────────────────────────────
        # compute local curvature angles
        norms = np.linalg.norm(vecs, axis=1, keepdims=True)
        unit = vecs / norms
        dots = np.sum(unit[:-1] * unit[1:], axis=1)
        dots = np.clip(dots, -1.0, 1.0)
        thetas = np.degrees(np.arccos(dots))
        apex_idx = int(np.argmax(thetas)) + 1  # vertex index
        vx, vy = cts[apex_idx]
        cv2.circle(overlay, (vx, vy), 15, (0, 0, 255), 2)

        # ─── draw centered Cobb text ────────────────────────────────
        text1 = "Cobb Angle"
        text2 = f"{cobb:.1f}"
        font = cv2.FONT_HERSHEY_SIMPLEX
        scale, thickness = 1.0, 2
        (w1,h1),_ = cv2.getTextSize(text1, font, scale, thickness)
        (w2,h2),_ = cv2.getTextSize(text2, font, scale, thickness)
        x1 = (W - w1)//2; y1 = H//2 - h1 - 10
        x2 = (W - w2)//2; y2 = H//2 + h2 + 10
        cv2.putText(overlay, text1, (x1, y1), font, scale, (0,255,255), thickness, cv2.LINE_AA)
        cv2.putText(overlay, text2, (x2, y2), font, scale, (0,255,255), thickness, cv2.LINE_AA)

        overlay_resized = cv2.resize(
            overlay, (orig_w, orig_h),
            interpolation=cv2.INTER_LINEAR
        )
        with col6:
            st.image(
                cv2.cvtColor(overlay_resized, cv2.COLOR_BGR2RGB),
                use_container_width=True
            )



elif feature == "LA - Image Segmetation":
    uploaded = st.file_uploader("", type=["jpg", "jpeg", "png"])
    img0 = None

    # ─── Maintain selected sample in session state ─────────
    if "sample_img_la" not in st.session_state:
        st.session_state.sample_img_la = None

    # ─── SAMPLE BUTTONS ─────────────────────────────────────
    with col1:
        if st.button(" 1️⃣ Example ", use_container_width=True):
            st.session_state.sample_img_la = "image_1_la.jpg"
    with col2:
        if st.button(" 2️⃣ Example ", use_container_width=True):
            st.session_state.sample_img_la = "image_2_la.jpg"
    with col3:
        if st.button(" 3️⃣ Example ", use_container_width=True):
            st.session_state.sample_img_la = "image_3_la.jpg"

    # ─── UI FOR UPLOAD + DISPLAY ───────────────────────────
    run_la = st.button("Enter", use_container_width=True)

    # ─── CONFIDENCE BANNER ─────────────────────────────────

    col7, col8 = st.columns(2)

    with col7:
        st.subheader("πŸ–ΌοΈ Original Image")

        sample_img_la = st.session_state.sample_img_la

        if uploaded:
            buf = uploaded.getvalue()
            img0 = Image.open(BytesIO(buf)).convert("RGB")
            st.image(img0, caption="Uploaded Image", use_container_width=True)

        elif sample_img_la is not None:
            img_path = os.path.join(REPO, sample_img_la)
            if os.path.isfile(img_path):
                img0 = Image.open(img_path).convert("RGB")
                st.image(img0, caption=f"Sample Image: {sample_img_la}", use_container_width=True)
            else:
                st.error(f"Cannot find {sample_img_la} in directory!")

    with col8:
        st.subheader("πŸ”Ž Predicted Image")

        # ─── PREDICTION ────────────────────────────────────
        if img0 is not None and run_la:
            img_np = np.array(img0)
            model = YOLO('best_100.pt')  # path to your weights
            with st.spinner("Running YOLO model…"):
                results = model(img_np, imgsz=640)

            # ─── Compute & Redisplay Confidence ────────────
            # get all box confidences (if no boxes, empty array)
            confidences = (results[0].boxes.conf.cpu().numpy() if hasattr(results[0].boxes, "conf") else np.array([]))
            avg_conf = confidences.mean() if confidences.size > 0 else 0.0

            # overwrite the placeholder banner with the real value


            # ─── Show Segmentation ────────────────────────
            pred_img = results[0].plot(boxes=False, probs=False)
            st.image(pred_img, caption="Prediction Result", use_container_width=True)
            st.markdown(
                f"<div style='text-align:center; font-size:20px; color:#4CAF50;'>"
                f"✨ **Confidence Level:** {avg_conf*100:.1f}% ✨"
                "</div>",
                unsafe_allow_html=True
            )


elif feature == "Contract":
    # shared styles
    card_style = """
        border:2px solid #0080FF;
        border-radius:10px;
        padding:15px;
        text-align:center;
        background-color:#F0F8FF;
    """
    title_style = "color:#00BFFF; margin-bottom:8px;"  # names
    body_style  = "color:#87CEEB; text-decoration:none;"

    with col1:
        st.image("dev_1.jpg", caption=None, use_container_width=True)
        st.markdown(
            f"""
            <div style="{card_style}">
                <h3 style="{title_style}">Thitsanapat S.</h3>
                <a href="https://www.facebook.com/thitsanapat.uma"
                   target="_blank"
                   style="{body_style}">
                   πŸ”— Facebook Profile
                </a>
            </div>
            """,
            unsafe_allow_html=True
        )

    with col2:
        st.image("dev_2.jpg", caption=None, use_container_width=True)
        st.markdown(
            f"""
            <div style="{card_style}">
                <h3 style="{title_style}">Santipab T.</h3>
                <a href="https://www.facebook.com/santipab.tongchan.2025"
                   target="_blank"
                   style="{body_style}">
                   πŸ”— Facebook Profile
                </a>
            </div>
            """,
            unsafe_allow_html=True
        )

    with col3:
        st.image("dev_3.jpg", caption=None, use_container_width=True)
        st.markdown(
            f"""
            <div style="{card_style}">
                <h3 style="{title_style}">Suphanat K.</h3>
                <a href="https://www.facebook.com/suphanat.kamphapan"
                   target="_blank"
                   style="{body_style}">
                   πŸ”— Facebook Profile
                </a>
            </div>
            """,
            unsafe_allow_html=True
        )