Update app.py
Browse files
app.py
CHANGED
@@ -88,8 +88,8 @@ col1, col2, col3, col4 = st.columns(4)
|
|
88 |
with col4:
|
89 |
feature = st.selectbox(
|
90 |
"π Select Feature",
|
91 |
-
["How to use", "AP - Detection", "
|
92 |
-
index=
|
93 |
help="Choose which view to display"
|
94 |
)
|
95 |
|
@@ -98,14 +98,25 @@ if feature == "How to use":
|
|
98 |
|
99 |
col1, col2, col3 = st.columns(3)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
with col1:
|
102 |
st.markdown(
|
103 |
-
"""
|
104 |
-
<div style=
|
105 |
-
<h2>Step 1οΈβ£</h2>
|
106 |
-
<p>Go to <b>AP - Detection</b> or <b>LA - Image Segmentation</b></p>
|
107 |
-
<p>Select a sample image or upload your own image file.</p>
|
108 |
-
<p style=
|
109 |
</div>
|
110 |
""",
|
111 |
unsafe_allow_html=True
|
@@ -113,12 +124,12 @@ if feature == "How to use":
|
|
113 |
|
114 |
with col2:
|
115 |
st.markdown(
|
116 |
-
"""
|
117 |
-
<div style=
|
118 |
-
<h2>Step 2οΈβ£</h2>
|
119 |
-
<p>Press the <b>Enter</b> button.</p>
|
120 |
-
<p>The system will process your image automatically.</p>
|
121 |
-
<p style=
|
122 |
</div>
|
123 |
""",
|
124 |
unsafe_allow_html=True
|
@@ -126,12 +137,12 @@ if feature == "How to use":
|
|
126 |
|
127 |
with col3:
|
128 |
st.markdown(
|
129 |
-
"""
|
130 |
-
<div style=
|
131 |
-
<h2>Step 3οΈβ£</h2>
|
132 |
-
<p>See the prediction results:</p>
|
133 |
-
<p style=
|
134 |
-
<p style=
|
135 |
</div>
|
136 |
""",
|
137 |
unsafe_allow_html=True
|
@@ -140,18 +151,17 @@ if feature == "How to use":
|
|
140 |
st.markdown(" ")
|
141 |
st.info("ΰΈͺΰΈ²ΰΈ‘ΰΈ²ΰΈ£ΰΈΰΉΰΈ₯ΰΈ·ΰΈΰΈΰΈΰΈ΅ΰΉΰΈΰΈΰΈ£ΰΉΰΉΰΈΰΉΰΈΰΉΰΈ²ΰΈ Select Feature ΰΉΰΈΰΈ’ΰΉΰΈΰΉΰΈ₯ΰΉΰΈ°ΰΈΰΈ΅ΰΉΰΈΰΈΰΈ£ΰΉΰΈΰΈ°ΰΈ‘ΰΈ΅ΰΈΰΈ±ΰΈ§ΰΈΰΈ’ΰΉΰΈ²ΰΈΰΈΰΈ³ΰΈΰΈ±ΰΈΰΉΰΈ«ΰΉΰΈ§ΰΉΰΈ²ΰΉΰΈΰΉΰΈΰΈ’ΰΈ±ΰΈΰΉΰΈ")
|
142 |
|
143 |
-
#
|
|
|
144 |
elif feature == "AP - Detection":
|
145 |
uploaded = st.file_uploader("", type=["jpg", "jpeg", "png"])
|
146 |
orig_w = orig_h = None
|
147 |
img0 = None
|
148 |
run = st.button("Enter", use_container_width=True)
|
149 |
|
150 |
-
# βββ Maintain selected sample in session state βββββββββ
|
151 |
if "sample_img" not in st.session_state:
|
152 |
st.session_state.sample_img = None
|
153 |
|
154 |
-
# βββ SAMPLE BUTTONS βββββββββββββββββββββββββββββββββββββ
|
155 |
with col1:
|
156 |
if st.button(" 1οΈβ£ Example", use_container_width=True):
|
157 |
st.session_state.sample_img = "image_1.jpg"
|
@@ -162,40 +172,34 @@ elif feature == "AP - Detection":
|
|
162 |
if st.button(" 3οΈβ£ Example", use_container_width=True):
|
163 |
st.session_state.sample_img = "image_3.jpg"
|
164 |
|
165 |
-
# βββ UI FOR UPLOAD + DISPLAY βββββββββββββββββββββββββββ
|
166 |
col4, col5, col6 = st.columns(3)
|
167 |
with col4:
|
168 |
st.subheader("1οΈβ£ Upload & Run")
|
169 |
-
|
170 |
sample_img = st.session_state.sample_img
|
171 |
-
|
172 |
if uploaded:
|
173 |
buf = uploaded.getvalue()
|
174 |
arr = np.frombuffer(buf, np.uint8)
|
175 |
img0 = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
176 |
orig_h, orig_w = img0.shape[:2]
|
177 |
st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
|
178 |
-
|
179 |
-
|
180 |
elif sample_img is not None:
|
181 |
img_path = os.path.join(REPO, sample_img)
|
182 |
img0 = cv2.imread(img_path)
|
183 |
if img0 is not None:
|
184 |
orig_h, orig_w = img0.shape[:2]
|
185 |
st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
|
186 |
-
caption=f"Sample Image: {sample_img}",
|
187 |
use_container_width=True)
|
188 |
else:
|
189 |
-
st.error(f"Cannot find {sample_img}
|
190 |
|
191 |
with col5:
|
192 |
st.subheader("2οΈβ£ Predictions")
|
193 |
with col6:
|
194 |
st.subheader("3οΈβ£ Heatmap")
|
195 |
|
196 |
-
# βββ ARGS & CHECKPOINT βββββββββββββββββββββββββββββββββ
|
197 |
args = Namespace(
|
198 |
-
resume="
|
199 |
data_dir=os.path.join(REPO, "dataPath"),
|
200 |
dataset="spinal",
|
201 |
phase="test",
|
@@ -213,21 +217,16 @@ elif feature == "AP - Detection":
|
|
213 |
if os.path.isfile(src_ckpt) and not os.path.isfile(dst_ckpt):
|
214 |
shutil.copy(src_ckpt, dst_ckpt)
|
215 |
|
216 |
-
# βββ MAIN LOGIC ββββββββββββββββββββββββββββββββββββββββ
|
217 |
if img0 is not None and run and orig_w and orig_h:
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
|
224 |
-
testd = os.path.join(args.data_dir, "data", "test")
|
225 |
-
os.makedirs(testd, exist_ok=True)
|
226 |
-
cv2.imwrite(os.path.join(testd, name), img0)
|
227 |
-
|
228 |
-
# patch BaseDataset to only load our one image
|
229 |
orig_init = BaseDataset.__init__
|
230 |
-
def patched_init(self, data_dir, phase,
|
|
|
231 |
orig_init(self, data_dir, phase, input_h, input_w, down_ratio)
|
232 |
if phase == "test":
|
233 |
self.img_ids = [name]
|
@@ -238,84 +237,117 @@ elif feature == "AP - Detection":
|
|
238 |
net.test(args, save=True)
|
239 |
|
240 |
out_dir = os.path.join(REPO, f"results_{args.dataset}")
|
241 |
-
pred_file =
|
242 |
-
|
|
|
|
|
243 |
txtf = os.path.join(out_dir, f"{name}.txt")
|
244 |
imgf = os.path.join(out_dir, pred_file)
|
245 |
|
246 |
-
# βββ Annotated
|
247 |
-
|
248 |
txt = np.loadtxt(txtf)
|
249 |
-
tlx, tly = txt[:,
|
250 |
-
trx, try_ = txt[:,
|
251 |
-
blx, bly = txt[:,
|
252 |
-
brx, bry = txt[:,
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
ref_h = np.median(heights)
|
277 |
-
|
278 |
-
percent = abs((ref_h - height) / ref_h * 100)
|
279 |
-
|
280 |
-
# color thresholds
|
281 |
-
if percent > 40:
|
282 |
-
color = (0, 0, 255)
|
283 |
-
elif percent > 20:
|
284 |
-
color = (0, 165, 255)
|
285 |
-
else:
|
286 |
-
color = (0, 255, 0)
|
287 |
-
|
288 |
-
# label
|
289 |
-
text_pos = (cx + 5, cy)
|
290 |
-
cv2.putText(ann, f"{percent:.0f}%", text_pos,
|
291 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2, cv2.LINE_AA)
|
292 |
-
print(f"ΰΈΰΈ£ΰΈ°ΰΈΰΈΉΰΈΰΈΰΈ±ΰΈ§ΰΈΰΈ΅ΰΉ {idx+1}: Compression = {percent:.1f}%")
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
297 |
with col5:
|
298 |
-
st.image(
|
299 |
-
|
|
|
|
|
300 |
|
301 |
-
# βββ Heatmap
|
|
|
302 |
H, W = base.shape[:2]
|
303 |
heat = np.zeros((H, W), np.float32)
|
|
|
|
|
|
|
|
|
|
|
304 |
for cx, cy in cts:
|
305 |
blob = np.zeros_like(heat)
|
306 |
blob[cy, cx] = 1.0
|
307 |
-
heat += cv2.GaussianBlur(blob, (0,
|
308 |
heat /= heat.max() + 1e-8
|
309 |
hm8 = (heat * 255).astype(np.uint8)
|
310 |
hm_c = cv2.applyColorMap(hm8, cv2.COLORMAP_JET)
|
311 |
raw = cv2.imread(imgf, cv2.IMREAD_GRAYSCALE)
|
312 |
raw_b = cv2.cvtColor(raw, cv2.COLOR_GRAY2BGR)
|
313 |
overlay = cv2.addWeighted(raw_b, 0.6, hm_c, 0.4, 0)
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
with col6:
|
317 |
-
st.image(
|
318 |
-
|
|
|
|
|
|
|
319 |
|
320 |
|
321 |
elif feature == "LA - Image Segmetation":
|
@@ -368,7 +400,7 @@ elif feature == "LA - Image Segmetation":
|
|
368 |
# βββ PREDICTION ββββββββββββββββββββββββββββββββββββ
|
369 |
if img0 is not None and run_la:
|
370 |
img_np = np.array(img0)
|
371 |
-
model = YOLO('./
|
372 |
with st.spinner("Running YOLO modelβ¦"):
|
373 |
results = model(img_np, imgsz=640)
|
374 |
|
@@ -392,40 +424,59 @@ elif feature == "LA - Image Segmetation":
|
|
392 |
|
393 |
|
394 |
elif feature == "Contract":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
with col1:
|
396 |
st.image("dev_1.jpg", caption=None, use_container_width=True)
|
397 |
st.markdown(
|
398 |
-
"""
|
399 |
-
<div style=
|
400 |
-
<h3>Thitsanapat
|
401 |
-
<a href=
|
402 |
-
|
|
|
|
|
403 |
</a>
|
404 |
</div>
|
405 |
""",
|
406 |
unsafe_allow_html=True
|
407 |
)
|
|
|
408 |
with col2:
|
409 |
st.image("dev_2.jpg", caption=None, use_container_width=True)
|
410 |
st.markdown(
|
411 |
-
"""
|
412 |
-
<div style=
|
413 |
-
<h3>Santipab
|
414 |
-
<a href=
|
415 |
-
|
|
|
|
|
416 |
</a>
|
417 |
</div>
|
418 |
""",
|
419 |
unsafe_allow_html=True
|
420 |
)
|
|
|
421 |
with col3:
|
422 |
st.image("dev_3.jpg", caption=None, use_container_width=True)
|
423 |
st.markdown(
|
424 |
-
"""
|
425 |
-
<div style=
|
426 |
-
<h3>Suphanat
|
427 |
-
<a href=
|
428 |
-
|
|
|
|
|
429 |
</a>
|
430 |
</div>
|
431 |
""",
|
@@ -433,4 +484,3 @@ elif feature == "Contract":
|
|
433 |
)
|
434 |
|
435 |
|
436 |
-
|
|
|
88 |
with col4:
|
89 |
feature = st.selectbox(
|
90 |
"π Select Feature",
|
91 |
+
["How to use", "AP - Detection", "LA - Image Segmetation", "Contract"],
|
92 |
+
index=3, # default to "AP"
|
93 |
help="Choose which view to display"
|
94 |
)
|
95 |
|
|
|
98 |
|
99 |
col1, col2, col3 = st.columns(3)
|
100 |
|
101 |
+
card_style = """
|
102 |
+
border:2px solid #00BFFF;
|
103 |
+
border-radius:10px;
|
104 |
+
padding:15px;
|
105 |
+
text-align:center;
|
106 |
+
background-color:#F0F8FF;
|
107 |
+
"""
|
108 |
+
|
109 |
+
title_style = "color:#000f14; margin-bottom:10px;"
|
110 |
+
body_style = "color:#000f14; text-align:left;"
|
111 |
+
|
112 |
with col1:
|
113 |
st.markdown(
|
114 |
+
f"""
|
115 |
+
<div style="{card_style}">
|
116 |
+
<h2 style="{title_style}">Step 1οΈβ£</h2>
|
117 |
+
<p style="{body_style}">Go to <b>AP - Detection</b> or <b>LA - Image Segmentation</b></p>
|
118 |
+
<p style="{body_style}">Select a sample image or upload your own image file.</p>
|
119 |
+
<p style="color:#008000;"><b>β
Tip:</b> Best with X-ray images with clear vertebra visibility.</p>
|
120 |
</div>
|
121 |
""",
|
122 |
unsafe_allow_html=True
|
|
|
124 |
|
125 |
with col2:
|
126 |
st.markdown(
|
127 |
+
f"""
|
128 |
+
<div style="{card_style}">
|
129 |
+
<h2 style="{title_style}">Step 2οΈβ£</h2>
|
130 |
+
<p style="{body_style}">Press the <b>Enter</b> button.</p>
|
131 |
+
<p style="{body_style}">The system will process your image automatically.</p>
|
132 |
+
<p style="color:#FFA500;"><b>β³ Note:</b> Processing time depends on image size.</p>
|
133 |
</div>
|
134 |
""",
|
135 |
unsafe_allow_html=True
|
|
|
137 |
|
138 |
with col3:
|
139 |
st.markdown(
|
140 |
+
f"""
|
141 |
+
<div style="{card_style}">
|
142 |
+
<h2 style="{title_style}">Step 3οΈβ£</h2>
|
143 |
+
<p style="{body_style}">See the prediction results:</p>
|
144 |
+
<p style="{body_style}">1. Bounding boxes & landmarks (AP)</p>
|
145 |
+
<p style="{body_style}">2. Segmentation masks (LA)</p>
|
146 |
</div>
|
147 |
""",
|
148 |
unsafe_allow_html=True
|
|
|
151 |
st.markdown(" ")
|
152 |
st.info("ΰΈͺΰΈ²ΰΈ‘ΰΈ²ΰΈ£ΰΈΰΉΰΈ₯ΰΈ·ΰΈΰΈΰΈΰΈ΅ΰΉΰΈΰΈΰΈ£ΰΉΰΉΰΈΰΉΰΈΰΉΰΈ²ΰΈ Select Feature ΰΉΰΈΰΈ’ΰΉΰΈΰΉΰΈ₯ΰΉΰΈ°ΰΈΰΈ΅ΰΉΰΈΰΈΰΈ£ΰΉΰΈΰΈ°ΰΈ‘ΰΈ΅ΰΈΰΈ±ΰΈ§ΰΈΰΈ’ΰΉΰΈ²ΰΈΰΈΰΈ³ΰΈΰΈ±ΰΈΰΉΰΈ«ΰΉΰΈ§ΰΉΰΈ²ΰΉΰΈΰΉΰΈΰΈ’ΰΈ±ΰΈΰΉΰΈ")
|
153 |
|
154 |
+
# β¦ (any code above)
|
155 |
+
|
156 |
elif feature == "AP - Detection":
|
157 |
uploaded = st.file_uploader("", type=["jpg", "jpeg", "png"])
|
158 |
orig_w = orig_h = None
|
159 |
img0 = None
|
160 |
run = st.button("Enter", use_container_width=True)
|
161 |
|
|
|
162 |
if "sample_img" not in st.session_state:
|
163 |
st.session_state.sample_img = None
|
164 |
|
|
|
165 |
with col1:
|
166 |
if st.button(" 1οΈβ£ Example", use_container_width=True):
|
167 |
st.session_state.sample_img = "image_1.jpg"
|
|
|
172 |
if st.button(" 3οΈβ£ Example", use_container_width=True):
|
173 |
st.session_state.sample_img = "image_3.jpg"
|
174 |
|
|
|
175 |
col4, col5, col6 = st.columns(3)
|
176 |
with col4:
|
177 |
st.subheader("1οΈβ£ Upload & Run")
|
|
|
178 |
sample_img = st.session_state.sample_img
|
|
|
179 |
if uploaded:
|
180 |
buf = uploaded.getvalue()
|
181 |
arr = np.frombuffer(buf, np.uint8)
|
182 |
img0 = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
183 |
orig_h, orig_w = img0.shape[:2]
|
184 |
st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
|
185 |
+
use_container_width=True)
|
|
|
186 |
elif sample_img is not None:
|
187 |
img_path = os.path.join(REPO, sample_img)
|
188 |
img0 = cv2.imread(img_path)
|
189 |
if img0 is not None:
|
190 |
orig_h, orig_w = img0.shape[:2]
|
191 |
st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
|
|
|
192 |
use_container_width=True)
|
193 |
else:
|
194 |
+
st.error(f"Cannot find {sample_img}")
|
195 |
|
196 |
with col5:
|
197 |
st.subheader("2οΈβ£ Predictions")
|
198 |
with col6:
|
199 |
st.subheader("3οΈβ£ Heatmap")
|
200 |
|
|
|
201 |
args = Namespace(
|
202 |
+
resume="model_50.pth",
|
203 |
data_dir=os.path.join(REPO, "dataPath"),
|
204 |
dataset="spinal",
|
205 |
phase="test",
|
|
|
217 |
if os.path.isfile(src_ckpt) and not os.path.isfile(dst_ckpt):
|
218 |
shutil.copy(src_ckpt, dst_ckpt)
|
219 |
|
|
|
220 |
if img0 is not None and run and orig_w and orig_h:
|
221 |
+
name = (os.path.splitext(uploaded.name)[0]
|
222 |
+
if uploaded else os.path.splitext(sample_img)[0]) + ".jpg"
|
223 |
+
test_dir = os.path.join(args.data_dir, "data", "test")
|
224 |
+
os.makedirs(test_dir, exist_ok=True)
|
225 |
+
cv2.imwrite(os.path.join(test_dir, name), img0)
|
226 |
|
|
|
|
|
|
|
|
|
|
|
227 |
orig_init = BaseDataset.__init__
|
228 |
+
def patched_init(self, data_dir, phase,
|
229 |
+
input_h=None, input_w=None, down_ratio=4):
|
230 |
orig_init(self, data_dir, phase, input_h, input_w, down_ratio)
|
231 |
if phase == "test":
|
232 |
self.img_ids = [name]
|
|
|
237 |
net.test(args, save=True)
|
238 |
|
239 |
out_dir = os.path.join(REPO, f"results_{args.dataset}")
|
240 |
+
pred_file = next(
|
241 |
+
f for f in os.listdir(out_dir)
|
242 |
+
if f.startswith(name) and f.endswith("_pred.jpg")
|
243 |
+
)
|
244 |
txtf = os.path.join(out_dir, f"{name}.txt")
|
245 |
imgf = os.path.join(out_dir, pred_file)
|
246 |
|
247 |
+
# βββ Annotated predictions βββββββββββββββββββββββββββββββββββββ
|
248 |
+
ann = cv2.imread(imgf)
|
249 |
txt = np.loadtxt(txtf)
|
250 |
+
tlx, tly = txt[:,2].astype(int), txt[:,3].astype(int)
|
251 |
+
trx, try_ = txt[:,4].astype(int), txt[:,5].astype(int)
|
252 |
+
blx, bly = txt[:,6].astype(int), txt[:,7].astype(int)
|
253 |
+
brx, bry = txt[:,8].astype(int), txt[:,9].astype(int)
|
254 |
+
|
255 |
+
for x1, y1, x2, y2 in zip(tlx, tly, trx, try_):
|
256 |
+
cv2.line(ann, (x1, y1), (x2, y2), (255,255,0), 2)
|
257 |
+
|
258 |
+
for x1,y1,x2,y2,x3,y3,x4,y4 in zip(
|
259 |
+
tlx, tly, trx, try_, blx, bly, brx, bry
|
260 |
+
):
|
261 |
+
top_mid = np.array([(x1+x2)/2, (y1+y2)/2])
|
262 |
+
bot_mid = np.array([(x3+x4)/2, (y3+y4)/2])
|
263 |
+
p0 = tuple(top_mid.astype(int))
|
264 |
+
p1 = tuple(bot_mid.astype(int))
|
265 |
+
cv2.line(ann, p0, p1, (0,255,255), 2)
|
266 |
+
|
267 |
+
h_before = np.linalg.norm(bot_mid - top_mid)
|
268 |
+
h_after = 2 * int(h_before * 0.4)
|
269 |
+
pct = ((h_before - h_after) / h_before * 100) - 10
|
270 |
+
clr = (0,0,255) if pct > 40 else (
|
271 |
+
(0,165,255) if pct > 20 else (0,255,255))
|
272 |
+
text_pos = (x2 + 5, y2 - 5)
|
273 |
+
cv2.putText(
|
274 |
+
ann, f"{pct:.0f}%", text_pos,
|
275 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, clr, 2, cv2.LINE_AA
|
276 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
ann_resized = cv2.resize(
|
279 |
+
ann, (orig_w, orig_h),
|
280 |
+
interpolation=cv2.INTER_LINEAR
|
281 |
+
)
|
282 |
with col5:
|
283 |
+
st.image(
|
284 |
+
cv2.cvtColor(ann_resized, cv2.COLOR_BGR2RGB),
|
285 |
+
use_container_width=True
|
286 |
+
)
|
287 |
|
288 |
+
# βββ Heatmap overlay + connecting lines βββββββββββββββββββββββββ
|
289 |
+
base = cv2.imread(imgf)
|
290 |
H, W = base.shape[:2]
|
291 |
heat = np.zeros((H, W), np.float32)
|
292 |
+
cts = []
|
293 |
+
for (x1, y1), (x2, y2) in zip(zip(tlx, tly), zip(trx, try_)):
|
294 |
+
tm = np.array([(x1 + x2)/2, (y1 + y2)/2])
|
295 |
+
cts.append((int(tm[0]), int(tm[1])))
|
296 |
+
|
297 |
for cx, cy in cts:
|
298 |
blob = np.zeros_like(heat)
|
299 |
blob[cy, cx] = 1.0
|
300 |
+
heat += cv2.GaussianBlur(blob, (0,0), sigmaX=8, sigmaY=8)
|
301 |
heat /= heat.max() + 1e-8
|
302 |
hm8 = (heat * 255).astype(np.uint8)
|
303 |
hm_c = cv2.applyColorMap(hm8, cv2.COLORMAP_JET)
|
304 |
raw = cv2.imread(imgf, cv2.IMREAD_GRAYSCALE)
|
305 |
raw_b = cv2.cvtColor(raw, cv2.COLOR_GRAY2BGR)
|
306 |
overlay = cv2.addWeighted(raw_b, 0.6, hm_c, 0.4, 0)
|
307 |
+
|
308 |
+
for p1, p2 in zip(cts, cts[1:]):
|
309 |
+
cv2.line(overlay, p1, p2, (0,255,255), 2)
|
310 |
+
|
311 |
+
# βββ Cobbβangle original logic ββββββββββββββββββββββββββββββββ
|
312 |
+
vecs = np.diff(np.array(cts), axis=0)
|
313 |
+
angles = np.degrees(np.arctan2(vecs[:,1], vecs[:,0]))
|
314 |
+
idx_max = int(np.argmax(angles))
|
315 |
+
idx_min = int(np.argmin(angles))
|
316 |
+
cobb = abs(angles[idx_max] - angles[idx_min])
|
317 |
+
|
318 |
+
# βββ highlight apex of curvature βββββββββββββββββββββββββββββ
|
319 |
+
# compute local curvature angles
|
320 |
+
norms = np.linalg.norm(vecs, axis=1, keepdims=True)
|
321 |
+
unit = vecs / norms
|
322 |
+
dots = np.sum(unit[:-1] * unit[1:], axis=1)
|
323 |
+
dots = np.clip(dots, -1.0, 1.0)
|
324 |
+
thetas = np.degrees(np.arccos(dots))
|
325 |
+
apex_idx = int(np.argmax(thetas)) + 1 # vertex index
|
326 |
+
vx, vy = cts[apex_idx]
|
327 |
+
cv2.circle(overlay, (vx, vy), 15, (0, 0, 255), 2)
|
328 |
+
|
329 |
+
# βββ draw centered Cobb text ββββββββββββββββββββββββββββββββ
|
330 |
+
text1 = "Cobb Angle"
|
331 |
+
text2 = f"{cobb:.1f}"
|
332 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
333 |
+
scale, thickness = 1.0, 2
|
334 |
+
(w1,h1),_ = cv2.getTextSize(text1, font, scale, thickness)
|
335 |
+
(w2,h2),_ = cv2.getTextSize(text2, font, scale, thickness)
|
336 |
+
x1 = (W - w1)//2; y1 = H//2 - h1 - 10
|
337 |
+
x2 = (W - w2)//2; y2 = H//2 + h2 + 10
|
338 |
+
cv2.putText(overlay, text1, (x1, y1), font, scale, (0,255,255), thickness, cv2.LINE_AA)
|
339 |
+
cv2.putText(overlay, text2, (x2, y2), font, scale, (0,255,255), thickness, cv2.LINE_AA)
|
340 |
+
|
341 |
+
overlay_resized = cv2.resize(
|
342 |
+
overlay, (orig_w, orig_h),
|
343 |
+
interpolation=cv2.INTER_LINEAR
|
344 |
+
)
|
345 |
with col6:
|
346 |
+
st.image(
|
347 |
+
cv2.cvtColor(overlay_resized, cv2.COLOR_BGR2RGB),
|
348 |
+
use_container_width=True
|
349 |
+
)
|
350 |
+
|
351 |
|
352 |
|
353 |
elif feature == "LA - Image Segmetation":
|
|
|
400 |
# βββ PREDICTION ββββββββββββββββββββββββββββββββββββ
|
401 |
if img0 is not None and run_la:
|
402 |
img_np = np.array(img0)
|
403 |
+
model = YOLO('./best_100.pt') # path to your weights
|
404 |
with st.spinner("Running YOLO modelβ¦"):
|
405 |
results = model(img_np, imgsz=640)
|
406 |
|
|
|
424 |
|
425 |
|
426 |
elif feature == "Contract":
|
427 |
+
# shared styles
|
428 |
+
card_style = """
|
429 |
+
border:2px solid #0080FF;
|
430 |
+
border-radius:10px;
|
431 |
+
padding:15px;
|
432 |
+
text-align:center;
|
433 |
+
background-color:#F0F8FF;
|
434 |
+
"""
|
435 |
+
title_style = "color:#00BFFF; margin-bottom:8px;" # names
|
436 |
+
body_style = "color:#87CEEB; text-decoration:none;"
|
437 |
+
|
438 |
with col1:
|
439 |
st.image("dev_1.jpg", caption=None, use_container_width=True)
|
440 |
st.markdown(
|
441 |
+
f"""
|
442 |
+
<div style="{card_style}">
|
443 |
+
<h3 style="{title_style}">Thitsanapat S.</h3>
|
444 |
+
<a href="https://www.facebook.com/thitsanapat.uma"
|
445 |
+
target="_blank"
|
446 |
+
style="{body_style}">
|
447 |
+
π Facebook Profile
|
448 |
</a>
|
449 |
</div>
|
450 |
""",
|
451 |
unsafe_allow_html=True
|
452 |
)
|
453 |
+
|
454 |
with col2:
|
455 |
st.image("dev_2.jpg", caption=None, use_container_width=True)
|
456 |
st.markdown(
|
457 |
+
f"""
|
458 |
+
<div style="{card_style}">
|
459 |
+
<h3 style="{title_style}">Santipab T.</h3>
|
460 |
+
<a href="https://www.facebook.com/santipab.tongchan.2025"
|
461 |
+
target="_blank"
|
462 |
+
style="{body_style}">
|
463 |
+
π Facebook Profile
|
464 |
</a>
|
465 |
</div>
|
466 |
""",
|
467 |
unsafe_allow_html=True
|
468 |
)
|
469 |
+
|
470 |
with col3:
|
471 |
st.image("dev_3.jpg", caption=None, use_container_width=True)
|
472 |
st.markdown(
|
473 |
+
f"""
|
474 |
+
<div style="{card_style}">
|
475 |
+
<h3 style="{title_style}">Suphanat K.</h3>
|
476 |
+
<a href="https://www.facebook.com/suphanat.kamphapan"
|
477 |
+
target="_blank"
|
478 |
+
style="{body_style}">
|
479 |
+
π Facebook Profile
|
480 |
</a>
|
481 |
</div>
|
482 |
""",
|
|
|
484 |
)
|
485 |
|
486 |
|
|