Santipab's picture
Update app.py
e27d0a1 verified
raw
history blame
19.1 kB
import os
import sys
import shutil
import importlib.util
from io import BytesIO
from ultralytics import YOLO
from PIL import Image
import torch
# ─── FORCE CPU ONLY ─────────────────────────────────────────────────────────
torch.Tensor.cuda = lambda self, *args, **kwargs: self
torch.nn.Module.cuda = lambda self, *args, **kwargs: self
torch.cuda.synchronize = lambda *args, **kwargs: None
torch.cuda.is_available= lambda : False
torch.cuda.device_count= lambda : 0
_orig_to = torch.Tensor.to
def _to_cpu(self, *args, **kwargs):
new_args = []
for a in args:
if isinstance(a, str) and a.lower().startswith("cuda"):
new_args.append("cpu")
elif isinstance(a, torch.device) and a.type=="cuda":
new_args.append(torch.device("cpu"))
else:
new_args.append(a)
if "device" in kwargs:
dev = kwargs["device"]
if (isinstance(dev, str) and dev.lower().startswith("cuda")) or \
(isinstance(dev, torch.device) and dev.type=="cuda"):
kwargs["device"] = torch.device("cpu")
return _orig_to(self, *new_args, **kwargs)
torch.Tensor.to = _to_cpu
from torch.utils.data import DataLoader as _DL
def _dl0(ds, *a, **kw):
kw['num_workers'] = 0
return _DL(ds, *a, **kw)
import torch.utils.data as _du
_du.DataLoader = _dl0
import cv2
import numpy as np
import streamlit as st
from argparse import Namespace
# ─── DYNAMIC IMPORT ─────────────────────────────────────────────────────────
REPO = os.path.dirname(os.path.abspath(__file__))
sys.path.append(REPO)
models_dir = os.path.join(REPO, "models")
os.makedirs(models_dir, exist_ok=True)
open(os.path.join(models_dir, "__init__.py"), "a").close()
def load_mod(name, path):
spec = importlib.util.spec_from_file_location(name, path)
m = importlib.util.module_from_spec(spec)
spec.loader.exec_module(m)
sys.modules[name] = m
return m
dataset_mod = load_mod("dataset", os.path.join(REPO, "dataset.py"))
decoder_mod = load_mod("decoder", os.path.join(REPO, "decoder.py"))
draw_mod = load_mod("draw_points", os.path.join(REPO, "draw_points.py"))
test_mod = load_mod("test", os.path.join(REPO, "test.py"))
load_mod("models.dec_net", os.path.join(models_dir, "dec_net.py"))
load_mod("models.model_parts", os.path.join(models_dir, "model_parts.py"))
load_mod("models.resnet", os.path.join(models_dir, "resnet.py"))
load_mod("models.spinal_net", os.path.join(models_dir, "spinal_net.py"))
BaseDataset = dataset_mod.BaseDataset
Network = test_mod.Network
# ─── STREAMLIT UI ───────────────────────────────────────────────────────────
st.set_page_config(layout="wide", page_title="Vertebral Compression Fracture")
st.markdown(
"""
<div style='border: 2px solid #0080FF; border-radius: 5px; padding: 10px'>
<h1 style='text-align: center; color: #0080FF'>
🦴 Vertebral Compression Fracture Detection πŸ–ΌοΈ
</h1>
</div>
""", unsafe_allow_html=True)
st.markdown("")
st.markdown("")
st.markdown("")
col1, col2, col3, col4 = st.columns(4)
with col4:
feature = st.selectbox(
"πŸ”€ Select Feature",
["How to use", "AP - Detection", "LA - Image Segmetation", "Contract"],
index=3, # default to "AP"
help="Choose which view to display"
)
if feature == "How to use":
st.markdown("## πŸ“– How to use this app")
col1, col2, col3 = st.columns(3)
card_style = """
border:2px solid #00BFFF;
border-radius:10px;
padding:15px;
text-align:center;
background-color:#F0F8FF;
"""
title_style = "color:#000f14; margin-bottom:10px;"
body_style = "color:#000f14; text-align:left;"
with col1:
st.markdown(
f"""
<div style="{card_style}">
<h2 style="{title_style}">Step 1️⃣</h2>
<p style="{body_style}">Go to <b>AP - Detection</b> or <b>LA - Image Segmentation</b></p>
<p style="{body_style}">Select a sample image or upload your own image file.</p>
<p style="color:#008000;"><b>βœ… Tip:</b> Best with X-ray images with clear vertebra visibility.</p>
</div>
""",
unsafe_allow_html=True
)
with col2:
st.markdown(
f"""
<div style="{card_style}">
<h2 style="{title_style}">Step 2️⃣</h2>
<p style="{body_style}">Press the <b>Enter</b> button.</p>
<p style="{body_style}">The system will process your image automatically.</p>
<p style="color:#FFA500;"><b>⏳ Note:</b> Processing time depends on image size.</p>
</div>
""",
unsafe_allow_html=True
)
with col3:
st.markdown(
f"""
<div style="{card_style}">
<h2 style="{title_style}">Step 3️⃣</h2>
<p style="{body_style}">See the prediction results:</p>
<p style="{body_style}">1. Bounding boxes & landmarks (AP)</p>
<p style="{body_style}">2. Segmentation masks (LA)</p>
</div>
""",
unsafe_allow_html=True
)
st.markdown(" ")
st.info("ΰΈͺΰΈ²ΰΈ‘ΰΈ²ΰΈ£ΰΈ–ΰΉ€ΰΈ₯ΰΈ·ΰΈ­ΰΈΰΈŸΰΈ΅ΰΉ€ΰΈˆΰΈ­ΰΈ£ΰΉŒΰΉ„ΰΈ”ΰΉ‰ΰΈœΰΉˆΰΈ²ΰΈ™ Select Feature ΰΉ‚ΰΈ”ΰΈ’ΰΉΰΈ•ΰΉˆΰΈ₯ΰΉˆΰΈ°ΰΈŸΰΈ΅ΰΉ€ΰΈˆΰΈ­ΰΈ£ΰΉŒΰΈˆΰΈ°ΰΈ‘ΰΈ΅ΰΈ•ΰΈ±ΰΈ§ΰΈ­ΰΈ’ΰΉˆΰΈ²ΰΈ‡ΰΈΰΈ³ΰΈΰΈ±ΰΈšΰΉƒΰΈ«ΰΉ‰ΰΈ§ΰΉˆΰΈ²ΰΉ€ΰΈ›ΰΉ‡ΰΈ™ΰΈ’ΰΈ±ΰΈ‡ΰΉ„ΰΈ‡")
# … (any code above)
elif feature == "AP - Detection":
uploaded = st.file_uploader("", type=["jpg", "jpeg", "png"])
orig_w = orig_h = None
img0 = None
run = st.button("Enter", use_container_width=True)
if "sample_img" not in st.session_state:
st.session_state.sample_img = None
with col1:
if st.button(" 1️⃣ Example", use_container_width=True):
st.session_state.sample_img = "image_1.jpg"
with col2:
if st.button(" 2️⃣ Example", use_container_width=True):
st.session_state.sample_img = "image_2.jpg"
with col3:
if st.button(" 3️⃣ Example", use_container_width=True):
st.session_state.sample_img = "image_3.jpg"
col4, col5, col6 = st.columns(3)
with col4:
st.subheader("1️⃣ Upload & Run")
sample_img = st.session_state.sample_img
if uploaded:
buf = uploaded.getvalue()
arr = np.frombuffer(buf, np.uint8)
img0 = cv2.imdecode(arr, cv2.IMREAD_COLOR)
orig_h, orig_w = img0.shape[:2]
st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
use_container_width=True)
elif sample_img is not None:
img_path = os.path.join(REPO, sample_img)
img0 = cv2.imread(img_path)
if img0 is not None:
orig_h, orig_w = img0.shape[:2]
st.image(cv2.cvtColor(img0, cv2.COLOR_BGR2RGB),
use_container_width=True)
else:
st.error(f"Cannot find {sample_img}")
with col5:
st.subheader("2️⃣ Predictions")
with col6:
st.subheader("3️⃣ Heatmap")
args = Namespace(
resume="model_50.pth",
data_dir=os.path.join(REPO, "dataPath"),
dataset="spinal",
phase="test",
input_h=1024,
input_w=512,
down_ratio=4,
num_classes=1,
K=17,
conf_thresh=0.2,
)
weights_dir = os.path.join(REPO, "weights_spinal")
os.makedirs(weights_dir, exist_ok=True)
src_ckpt = os.path.join(REPO, "model_backup", args.resume)
dst_ckpt = os.path.join(weights_dir, args.resume)
if os.path.isfile(src_ckpt) and not os.path.isfile(dst_ckpt):
shutil.copy(src_ckpt, dst_ckpt)
if img0 is not None and run and orig_w and orig_h:
name = (os.path.splitext(uploaded.name)[0]
if uploaded else os.path.splitext(sample_img)[0]) + ".jpg"
test_dir = os.path.join(args.data_dir, "data", "test")
os.makedirs(test_dir, exist_ok=True)
cv2.imwrite(os.path.join(test_dir, name), img0)
orig_init = BaseDataset.__init__
def patched_init(self, data_dir, phase,
input_h=None, input_w=None, down_ratio=4):
orig_init(self, data_dir, phase, input_h, input_w, down_ratio)
if phase == "test":
self.img_ids = [name]
BaseDataset.__init__ = patched_init
with st.spinner("Running model…"):
net = Network(args)
net.test(args, save=True)
out_dir = os.path.join(REPO, f"results_{args.dataset}")
pred_file = next(
f for f in os.listdir(out_dir)
if f.startswith(name) and f.endswith("_pred.jpg")
)
txtf = os.path.join(out_dir, f"{name}.txt")
imgf = os.path.join(out_dir, pred_file)
# ─── Annotated predictions ─────────────────────────────────────
ann = cv2.imread(imgf)
txt = np.loadtxt(txtf)
tlx, tly = txt[:,2].astype(int), txt[:,3].astype(int)
trx, try_ = txt[:,4].astype(int), txt[:,5].astype(int)
blx, bly = txt[:,6].astype(int), txt[:,7].astype(int)
brx, bry = txt[:,8].astype(int), txt[:,9].astype(int)
for x1, y1, x2, y2 in zip(tlx, tly, trx, try_):
cv2.line(ann, (x1, y1), (x2, y2), (255,255,0), 2)
for x1,y1,x2,y2,x3,y3,x4,y4 in zip(
tlx, tly, trx, try_, blx, bly, brx, bry
):
top_mid = np.array([(x1+x2)/2, (y1+y2)/2])
bot_mid = np.array([(x3+x4)/2, (y3+y4)/2])
p0 = tuple(top_mid.astype(int))
p1 = tuple(bot_mid.astype(int))
cv2.line(ann, p0, p1, (0,255,255), 2)
h_before = np.linalg.norm(bot_mid - top_mid)
h_after = 2 * int(h_before * 0.4)
pct = ((h_before - h_after) / h_before * 100) - 10
clr = (0,0,255) if pct > 40 else (
(0,165,255) if pct > 20 else (0,255,255))
text_pos = (x2 + 5, y2 - 5)
cv2.putText(
ann, f"{pct:.0f}%", text_pos,
cv2.FONT_HERSHEY_SIMPLEX, 0.5, clr, 2, cv2.LINE_AA
)
ann_resized = cv2.resize(
ann, (orig_w, orig_h),
interpolation=cv2.INTER_LINEAR
)
with col5:
st.image(
cv2.cvtColor(ann_resized, cv2.COLOR_BGR2RGB),
use_container_width=True
)
# ─── Heatmap overlay + connecting lines ─────────────────────────
base = cv2.imread(imgf)
H, W = base.shape[:2]
heat = np.zeros((H, W), np.float32)
cts = []
for (x1, y1), (x2, y2) in zip(zip(tlx, tly), zip(trx, try_)):
tm = np.array([(x1 + x2)/2, (y1 + y2)/2])
cts.append((int(tm[0]), int(tm[1])))
for cx, cy in cts:
blob = np.zeros_like(heat)
blob[cy, cx] = 1.0
heat += cv2.GaussianBlur(blob, (0,0), sigmaX=8, sigmaY=8)
heat /= heat.max() + 1e-8
hm8 = (heat * 255).astype(np.uint8)
hm_c = cv2.applyColorMap(hm8, cv2.COLORMAP_JET)
raw = cv2.imread(imgf, cv2.IMREAD_GRAYSCALE)
raw_b = cv2.cvtColor(raw, cv2.COLOR_GRAY2BGR)
overlay = cv2.addWeighted(raw_b, 0.6, hm_c, 0.4, 0)
for p1, p2 in zip(cts, cts[1:]):
cv2.line(overlay, p1, p2, (0,255,255), 2)
# ─── Cobb‑angle original logic ────────────────────────────────
vecs = np.diff(np.array(cts), axis=0)
angles = np.degrees(np.arctan2(vecs[:,1], vecs[:,0]))
idx_max = int(np.argmax(angles))
idx_min = int(np.argmin(angles))
cobb = abs(angles[idx_max] - angles[idx_min])
# ─── highlight apex of curvature ─────────────────────────────
# compute local curvature angles
norms = np.linalg.norm(vecs, axis=1, keepdims=True)
unit = vecs / norms
dots = np.sum(unit[:-1] * unit[1:], axis=1)
dots = np.clip(dots, -1.0, 1.0)
thetas = np.degrees(np.arccos(dots))
apex_idx = int(np.argmax(thetas)) + 1 # vertex index
vx, vy = cts[apex_idx]
cv2.circle(overlay, (vx, vy), 15, (0, 0, 255), 2)
# ─── draw centered Cobb text ────────────────────────────────
text1 = "Cobb Angle"
text2 = f"{cobb:.1f}"
font = cv2.FONT_HERSHEY_SIMPLEX
scale, thickness = 1.0, 2
(w1,h1),_ = cv2.getTextSize(text1, font, scale, thickness)
(w2,h2),_ = cv2.getTextSize(text2, font, scale, thickness)
x1 = (W - w1)//2; y1 = H//2 - h1 - 10
x2 = (W - w2)//2; y2 = H//2 + h2 + 10
cv2.putText(overlay, text1, (x1, y1), font, scale, (0,255,255), thickness, cv2.LINE_AA)
cv2.putText(overlay, text2, (x2, y2), font, scale, (0,255,255), thickness, cv2.LINE_AA)
overlay_resized = cv2.resize(
overlay, (orig_w, orig_h),
interpolation=cv2.INTER_LINEAR
)
with col6:
st.image(
cv2.cvtColor(overlay_resized, cv2.COLOR_BGR2RGB),
use_container_width=True
)
elif feature == "LA - Image Segmetation":
uploaded = st.file_uploader("", type=["jpg", "jpeg", "png"])
img0 = None
# ─── Maintain selected sample in session state ─────────
if "sample_img_la" not in st.session_state:
st.session_state.sample_img_la = None
# ─── SAMPLE BUTTONS ─────────────────────────────────────
with col1:
if st.button(" 1️⃣ Example ", use_container_width=True):
st.session_state.sample_img_la = "image_1_la.jpg"
with col2:
if st.button(" 2️⃣ Example ", use_container_width=True):
st.session_state.sample_img_la = "image_2_la.jpg"
with col3:
if st.button(" 3️⃣ Example ", use_container_width=True):
st.session_state.sample_img_la = "image_3_la.jpg"
# ─── UI FOR UPLOAD + DISPLAY ───────────────────────────
run_la = st.button("Enter", use_container_width=True)
# ─── CONFIDENCE BANNER ─────────────────────────────────
col7, col8 = st.columns(2)
with col7:
st.subheader("πŸ–ΌοΈ Original Image")
sample_img_la = st.session_state.sample_img_la
if uploaded:
buf = uploaded.getvalue()
img0 = Image.open(BytesIO(buf)).convert("RGB")
st.image(img0, caption="Uploaded Image", use_container_width=True)
elif sample_img_la is not None:
img_path = os.path.join(REPO, sample_img_la)
if os.path.isfile(img_path):
img0 = Image.open(img_path).convert("RGB")
st.image(img0, caption=f"Sample Image: {sample_img_la}", use_container_width=True)
else:
st.error(f"Cannot find {sample_img_la} in directory!")
with col8:
st.subheader("πŸ”Ž Predicted Image")
# ─── PREDICTION ────────────────────────────────────
if img0 is not None and run_la:
img_np = np.array(img0)
model = YOLO('./best_100.pt') # path to your weights
with st.spinner("Running YOLO model…"):
results = model(img_np, imgsz=640)
# ─── Compute & Redisplay Confidence ────────────
# get all box confidences (if no boxes, empty array)
confidences = (results[0].boxes.conf.cpu().numpy() if hasattr(results[0].boxes, "conf") else np.array([]))
avg_conf = confidences.mean() if confidences.size > 0 else 0.0
# overwrite the placeholder banner with the real value
# ─── Show Segmentation ────────────────────────
pred_img = results[0].plot(boxes=False, probs=False)
st.image(pred_img, caption="Prediction Result", use_container_width=True)
st.markdown(
f"<div style='text-align:center; font-size:20px; color:#4CAF50;'>"
f"✨ **Confidence Level:** {avg_conf*100:.1f}% ✨"
"</div>",
unsafe_allow_html=True
)
elif feature == "Contract":
# shared styles
card_style = """
border:2px solid #0080FF;
border-radius:10px;
padding:15px;
text-align:center;
background-color:#F0F8FF;
"""
title_style = "color:#00BFFF; margin-bottom:8px;" # names
body_style = "color:#87CEEB; text-decoration:none;"
with col1:
st.image("dev_1.jpg", caption=None, use_container_width=True)
st.markdown(
f"""
<div style="{card_style}">
<h3 style="{title_style}">Thitsanapat S.</h3>
<a href="https://www.facebook.com/thitsanapat.uma"
target="_blank"
style="{body_style}">
πŸ”— Facebook Profile
</a>
</div>
""",
unsafe_allow_html=True
)
with col2:
st.image("dev_2.jpg", caption=None, use_container_width=True)
st.markdown(
f"""
<div style="{card_style}">
<h3 style="{title_style}">Santipab T.</h3>
<a href="https://www.facebook.com/santipab.tongchan.2025"
target="_blank"
style="{body_style}">
πŸ”— Facebook Profile
</a>
</div>
""",
unsafe_allow_html=True
)
with col3:
st.image("dev_3.jpg", caption=None, use_container_width=True)
st.markdown(
f"""
<div style="{card_style}">
<h3 style="{title_style}">Suphanat K.</h3>
<a href="https://www.facebook.com/suphanat.kamphapan"
target="_blank"
style="{body_style}">
πŸ”— Facebook Profile
</a>
</div>
""",
unsafe_allow_html=True
)