Spaces:
Sleeping
Sleeping
Create streamlit_app.py
Browse files- streamlit_app.py +36 -0
streamlit_app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import requests
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
# Set the title of the app
|
6 |
+
st.title("Medical Prediction Model")
|
7 |
+
|
8 |
+
# Instruction text
|
9 |
+
st.write("Enter 32 features for prediction:")
|
10 |
+
|
11 |
+
# Create 32 input fields for user input
|
12 |
+
inputs = []
|
13 |
+
for i in range(32):
|
14 |
+
value = st.number_input(f"Feature {i + 1}", min_value=0, step=1)
|
15 |
+
inputs.append(value)
|
16 |
+
|
17 |
+
# Button to make prediction
|
18 |
+
if st.button("Predict"):
|
19 |
+
# Prepare the data for the request
|
20 |
+
input_data = {"features": inputs}
|
21 |
+
|
22 |
+
# Set the URL for your FastAPI backend
|
23 |
+
url = "http://localhost:8501/predict" # Replace with your actual URL if deployed
|
24 |
+
|
25 |
+
# Make a POST request
|
26 |
+
response = requests.post(url, json=input_data) # Send the wrapped input_data
|
27 |
+
|
28 |
+
# Check the response status code
|
29 |
+
if response.status_code == 200:
|
30 |
+
# Get the JSON response
|
31 |
+
prediction = response.json()
|
32 |
+
# Display the prediction results
|
33 |
+
st.success("Prediction Results:")
|
34 |
+
st.json(prediction)
|
35 |
+
else:
|
36 |
+
st.error(f"Error: {response.status_code} - {response.text}")
|