Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,6 @@ import numpy as np
|
|
3 |
import joblib
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
-
import uvicorn
|
7 |
-
import streamlit as st
|
8 |
|
9 |
# Load model from the local storage (ensure the model file is in the same directory)
|
10 |
model_path = "model.pkl"
|
@@ -13,39 +11,6 @@ gb_model_loaded = joblib.load(model_path)
|
|
13 |
# Create FastAPI app
|
14 |
app = FastAPI()
|
15 |
|
16 |
-
# Set the title of the app
|
17 |
-
st.title("Medical Prediction Model")
|
18 |
-
|
19 |
-
# Instruction text
|
20 |
-
st.write("Enter 32 features for prediction:")
|
21 |
-
|
22 |
-
# Create 32 input fields for user input
|
23 |
-
inputs = []
|
24 |
-
for i in range(32):
|
25 |
-
value = st.number_input(f"Feature {i + 1}", min_value=0, step=1)
|
26 |
-
inputs.append(value)
|
27 |
-
|
28 |
-
# Button to make prediction
|
29 |
-
if st.button("Predict"):
|
30 |
-
# Prepare the data for the request
|
31 |
-
input_data = {"features": inputs}
|
32 |
-
|
33 |
-
# Set the URL for your Hugging Face Space
|
34 |
-
url = "https://phoner45-mediguide-api.hf.space/predict" # Replace with your actual Space URL
|
35 |
-
|
36 |
-
# Make a POST request
|
37 |
-
response = requests.post(url, json=inputs)
|
38 |
-
|
39 |
-
# Check the response status code
|
40 |
-
if response.status_code == 200:
|
41 |
-
# Get the JSON response
|
42 |
-
prediction = response.json()
|
43 |
-
# Display the prediction results
|
44 |
-
st.success("Prediction Results:")
|
45 |
-
st.json(prediction)
|
46 |
-
else:
|
47 |
-
st.error(f"Error: {response.status_code} - {response.text}")
|
48 |
-
|
49 |
# Define class labels
|
50 |
class_names = [
|
51 |
'Emergency & Accident Unit', 'Heart Clinic',
|
@@ -82,6 +47,9 @@ def predict(data: InputData):
|
|
82 |
except Exception as e:
|
83 |
raise HTTPException(status_code=500, detail=str(e))
|
84 |
|
85 |
-
#
|
|
|
86 |
# if __name__ == "__main__":
|
|
|
87 |
# uvicorn.run(app, host="0.0.0.0", port=8501)
|
|
|
|
3 |
import joblib
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
|
|
|
|
6 |
|
7 |
# Load model from the local storage (ensure the model file is in the same directory)
|
8 |
model_path = "model.pkl"
|
|
|
11 |
# Create FastAPI app
|
12 |
app = FastAPI()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Define class labels
|
15 |
class_names = [
|
16 |
'Emergency & Accident Unit', 'Heart Clinic',
|
|
|
47 |
except Exception as e:
|
48 |
raise HTTPException(status_code=500, detail=str(e))
|
49 |
|
50 |
+
# To run the FastAPI app locally for testing
|
51 |
+
# Uncomment the following lines
|
52 |
# if __name__ == "__main__":
|
53 |
+
# import uvicorn
|
54 |
# uvicorn.run(app, host="0.0.0.0", port=8501)
|
55 |
+
|