S-Dreamer commited on
Commit
1d3b489
·
verified ·
1 Parent(s): 70179be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -214
README.md CHANGED
@@ -13,229 +13,41 @@ tags:
13
  - mcp-server-track
14
  ---
15
 
 
16
 
17
- youtube : https://youtu.be/pfEEMukXVjw
18
-
19
- for a fast and functional deployment using ZerGPU please use : https://huggingface.co/spaces/Tonic/stock-predictions
20
-
21
-
22
- # Stock Analysis and Prediction Demo
23
-
24
- A comprehensive stock analysis and prediction tool built with Gradio, featuring multiple prediction strategies and technical analysis indicators. The application is particularly suited for structured financial product creation and analysis.
25
 
26
  ## Features
27
 
28
- - **Multiple Prediction Strategies**:
29
- - Chronos ML-based prediction
30
- - Technical analysis-based prediction
31
-
32
- - **Technical Indicators**:
33
- - RSI (Relative Strength Index)
34
- - MACD (Moving Average Convergence Divergence)
35
- - Bollinger Bands
36
- - Simple Moving Averages (20, 50, and 200-day)
37
-
38
- - **Trading Signals**:
39
- - Buy/Sell recommendations based on multiple indicators
40
- - Overall trading signal combining all indicators
41
- - Confidence intervals for predictions
42
-
43
- - **Interactive Visualizations**:
44
- - Price prediction with confidence intervals
45
- - Technical indicators overlay
46
- - Volume analysis
47
- - Historical price trends
48
-
49
- - **Structured Product Analysis**:
50
- - Extended prediction horizons (up to 1 year)
51
- - Historical analysis up to 10 years
52
- - Comprehensive risk metrics
53
- - Sector and industry analysis
54
- - Liquidity assessment
55
-
56
- ## Structured Product Features
57
-
58
- ### Extended Time Horizons
59
- - Prediction window up to 365 days
60
- - Historical data analysis up to 10 years
61
- - Long-term trend analysis
62
- - Extended technical indicators
63
-
64
- ### Risk Analysis
65
- - Annualized volatility
66
- - Maximum drawdown analysis
67
- - Current drawdown tracking
68
- - Sharpe and Sortino ratios
69
- - Risk-adjusted return metrics
70
-
71
- ### Product Metrics
72
- - Market capitalization
73
- - Sector and industry classification
74
- - Dividend yield analysis
75
- - Volume metrics
76
- - Liquidity scoring
77
-
78
- ### Sector Analysis
79
- - Market cap ranking (Large/Mid/Small)
80
- - Sector exposure
81
- - Industry classification
82
- - Liquidity assessment
83
 
84
  ## Installation
85
 
86
- 1. Clone the repository:
87
- ```bash
88
- git clone <repository-url>
89
- cd stock-prediction
90
- ```
91
 
92
- 2. Create and activate a virtual environment:
93
  ```bash
 
 
94
  python -m venv .venv
95
- source .venv/bin/activate # On Windows: .venv\Scripts\activate
96
- ```
97
-
98
- 3. Install dependencies:
99
- ```bash
100
  pip install -r requirements.txt
101
  ```
102
-
103
- ## Usage
104
-
105
- 1. Start the Gradio demo:
106
- ```bash
107
- python app.py
108
- ```
109
-
110
- 2. Open your web browser and navigate to the URL shown in the terminal (typically http://localhost:7860)
111
-
112
- 3. Enter a stock symbol (e.g., AAPL, GOOGL, MSFT) and select your desired parameters:
113
- - Timeframe (1d, 1h, 15m)
114
- - Number of days to predict (up to 365 days)
115
- - Historical lookback period (up to 10 years)
116
- - Prediction strategy (Chronos or Technical)
117
-
118
- 4. Click "Analyze Stock" to get:
119
- - Price predictions and trading signals
120
- - Structured product metrics
121
- - Risk analysis
122
- - Sector analysis
123
-
124
- ## Using for Structured Products
125
-
126
- ### Initial Screening
127
- 1. Use extended lookback period (up to 10 years) for long-term performance analysis
128
- 2. Look for stocks with stable volatility and good risk-adjusted returns
129
- 3. Check liquidity scores for trading feasibility
130
-
131
- ### Risk Assessment
132
- 1. Review risk metrics to match client risk profile
133
- 2. Analyze maximum drawdowns for worst-case scenarios
134
- 3. Compare risk-adjusted returns using Sharpe and Sortino ratios
135
-
136
- ### Product Structuring
137
- 1. Use prediction horizon (up to 1 year) for product maturity design
138
- 2. Consider dividend yields for income-generating products
139
- 3. Use sector analysis for proper diversification
140
-
141
- ### Portfolio Construction
142
- 1. Analyze multiple stocks for diversified bundles
143
- 2. Use sector metrics to avoid overexposure
144
- 3. Consider market cap rankings for appropriate sizing
145
-
146
- ## Prediction Strategies
147
-
148
- ### Chronos Strategy
149
- Uses Amazon's Chronos model for ML-based price prediction. This strategy:
150
- - Analyzes historical price patterns
151
- - Generates probabilistic forecasts
152
- - Provides confidence intervals
153
-
154
- ### Technical Strategy
155
- Uses traditional technical analysis indicators to generate predictions:
156
- - RSI for overbought/oversold conditions
157
- - MACD for trend direction
158
- - Bollinger Bands for volatility
159
- - Moving Averages for trend confirmation
160
-
161
- ## Trading Signals
162
-
163
- The demo provides trading signals based on multiple technical indicators:
164
- - RSI: Oversold (<30), Overbought (>70), Neutral
165
- - MACD: Buy (MACD > Signal), Sell (MACD < Signal)
166
- - Bollinger Bands: Buy (price < lower band), Sell (price > upper band)
167
- - SMA: Buy (20-day > 50-day), Sell (20-day < 50-day)
168
-
169
- An overall trading signal is calculated by combining all individual signals.
170
-
171
- ## Contributing
172
-
173
- Contributions are welcome! Please feel free to submit a Pull Request.
174
-
175
- ## License
176
-
177
- This project is licensed under the MIT License - see the LICENSE file for details.
178
-
179
- ## Practical Example: Creating a 6-Month 8% Yield Structured Product
180
-
181
- ### Scenario
182
- A bank needs to create a structured product that offers an 8% yield over 6 months while maintaining profitability for the institution.
183
-
184
- ### Step-by-Step Implementation
185
-
186
- 1. **Initial Stock Screening**
187
- - Use the application to analyze stocks with:
188
- - High liquidity (for easy hedging)
189
- - Stable volatility (for predictable risk)
190
- - Strong technical indicators
191
- - Positive long-term trends
192
- - Recommended stocks: AAPL, MSFT, GOOGL (high liquidity, stable volatility)
193
-
194
- 2. **Product Structure Design**
195
- - Use the 6-month prediction horizon
196
- - Analyze historical volatility for barrier setting
197
- - Set participation rate based on risk metrics
198
- - Structure: Reverse Convertible with 8% coupon
199
-
200
- 3. **Risk Analysis**
201
- - Use the application's risk metrics:
202
- - Check maximum drawdown (should be < 15% for 6 months)
203
- - Verify liquidity scores (should be > 80%)
204
- - Analyze Sharpe ratio (should be > 1.5)
205
-
206
- 4. **Business Case Example**
207
-
208
- **Product Parameters:**
209
- - Notional Amount: $1,000,000
210
- - Term: 6 months
211
- - Coupon: 8% p.a. (4% for 6 months)
212
- - Underlying: AAPL
213
- - Barrier: 85% of initial price
214
- - Participation: 100%
215
-
216
- **Revenue Structure:**
217
- - Client receives: 8% p.a. (4% for 6 months)
218
- - Bank's hedging cost: ~5% p.a.
219
- - Bank's profit margin: ~3% p.a.
220
- - Total client payout: $40,000 (4% of $1M)
221
- - Bank's profit: $15,000 (1.5% of $1M)
222
-
223
- 5. **Implementation Steps**
224
- - Use the application's extended prediction horizon (180 days)
225
- - Set technical indicators to monitor barrier risk
226
- - Implement dynamic delta hedging based on predictions
227
- - Monitor risk metrics daily using the application
228
-
229
- 6. **Risk Management**
230
- - Use the application's volatility predictions for dynamic hedging
231
- - Monitor technical indicators for early warning signals
232
- - Set up automated alerts for barrier proximity
233
- - Regular rebalancing based on prediction updates
234
-
235
- ### Key Success Factors
236
- - Regular monitoring of prediction accuracy
237
- - Dynamic adjustment of hedging strategy
238
- - Clear communication of product risks to clients
239
- - Proper documentation of all assumptions and methodologies
240
-
241
- This example demonstrates how the application can be used to create profitable structured products while managing risk effectively. The bank can use this framework to create similar products with different underlying assets, terms, and yield targets.
 
13
  - mcp-server-track
14
  ---
15
 
16
+ # Structured Product & Crypto Prediction App
17
 
18
+ This Gradio-based app allows users to analyze stocks for structured financial products using advanced predictive models (Chronos T5), technical indicators, and visualize results. It also supports simple cryptocurrency predictions and provides affiliate links for automated trading bots.
 
 
 
 
 
 
 
19
 
20
  ## Features
21
 
22
+ ### Stock & Structured Product Analysis
23
+ - Historical stock data fetching (daily, hourly, 15-minute intervals)
24
+ - Technical indicators: SMA, RSI, MACD, Bollinger Bands
25
+ - Volatility, drawdown, liquidity, and risk metrics
26
+ - Predictive analysis using **Chronos T5 pipeline**
27
+ - Automatic fallback to technical strategy if prediction fails
28
+ - Interactive Plotly visualizations
29
+ - Trading signals generation
30
+
31
+ ### Crypto Predictions
32
+ - Pulls historical crypto data (BTC, ETH, etc.) from Yahoo Finance
33
+ - Calculates SMA20 and SMA50 for trend signals
34
+ - Provides buy/sell indicators
35
+
36
+ ### Affiliate Links
37
+ - Links to popular crypto bots for automated trading:
38
+ - [Pionex](https://www.pionex.com/?affiliate_id=YOUR_ID)
39
+ - [Cornix](https://cornix.io/?ref=YOUR_ID)
40
+ - [Cryptohopper](https://www.cryptohopper.com/signup?ref=YOUR_ID)
41
+ - [3Commas](https://3commas.io/?r=YOUR_ID)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## Installation
44
 
45
+ Clone the repository and create a virtual environment:
 
 
 
 
46
 
 
47
  ```bash
48
+ git clone <repository-url>
49
+ cd crypto-prediction
50
  python -m venv .venv
51
+ source .venv/bin/activate # Windows: .venv\Scripts\activate
 
 
 
 
52
  pip install -r requirements.txt
53
  ```