Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -21,683 +21,84 @@ scaler = MinMaxScaler(feature_range=(-1, 1))
|
|
21 |
scaler.fit_transform([[-1, 1]])
|
22 |
|
23 |
def clear_gpu_memory():
|
24 |
-
"""Clear GPU memory cache"""
|
25 |
if torch.cuda.is_available():
|
26 |
torch.cuda.empty_cache()
|
27 |
gc.collect()
|
28 |
|
29 |
@spaces.GPU
|
30 |
def load_pipeline():
|
31 |
-
"""Load the Chronos model with GPU configuration"""
|
32 |
global pipeline
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
return pipeline
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error loading pipeline: {str(e)}")
|
46 |
-
raise RuntimeError(f"Failed to load model: {str(e)}")
|
47 |
|
48 |
def is_market_open() -> bool:
|
49 |
-
"""Check if the market is currently open"""
|
50 |
now = datetime.now()
|
51 |
-
|
52 |
-
if now.weekday() >= 5: # Saturday or Sunday
|
53 |
return False
|
54 |
-
|
55 |
-
# Check if it's during market hours (9:30 AM - 4:00 PM ET)
|
56 |
et_time = now.astimezone(pytz.timezone('US/Eastern'))
|
57 |
market_open = et_time.replace(hour=9, minute=30, second=0, microsecond=0)
|
58 |
market_close = et_time.replace(hour=16, minute=0, second=0, microsecond=0)
|
59 |
-
|
60 |
return market_open <= et_time <= market_close
|
61 |
|
62 |
def get_next_trading_day() -> datetime:
|
63 |
-
|
64 |
-
|
65 |
-
next_day = now + timedelta(days=1)
|
66 |
-
|
67 |
-
# Skip weekends
|
68 |
-
while next_day.weekday() >= 5: # Saturday or Sunday
|
69 |
next_day += timedelta(days=1)
|
70 |
-
|
71 |
return next_day
|
72 |
|
73 |
-
|
74 |
-
"""
|
75 |
-
Fetch historical data using yfinance.
|
76 |
-
|
77 |
-
Args:
|
78 |
-
symbol (str): The stock symbol (e.g., 'AAPL')
|
79 |
-
timeframe (str): The timeframe for data ('1d', '1h', '15m')
|
80 |
-
lookback_days (int): Number of days to look back
|
81 |
-
|
82 |
-
Returns:
|
83 |
-
pd.DataFrame: Historical data with OHLCV and technical indicators
|
84 |
-
"""
|
85 |
-
try:
|
86 |
-
# Check if market is open for intraday data
|
87 |
-
if timeframe in ["1h", "15m"] and not is_market_open():
|
88 |
-
next_trading_day = get_next_trading_day()
|
89 |
-
raise Exception(f"Market is currently closed. Next trading day is {next_trading_day.strftime('%Y-%m-%d')}")
|
90 |
-
|
91 |
-
# Map timeframe to yfinance interval and adjust lookback period
|
92 |
-
tf_map = {
|
93 |
-
"1d": "1d",
|
94 |
-
"1h": "1h",
|
95 |
-
"15m": "15m"
|
96 |
-
}
|
97 |
-
interval = tf_map.get(timeframe, "1d")
|
98 |
-
|
99 |
-
# Adjust lookback period based on timeframe
|
100 |
-
if timeframe == "1h":
|
101 |
-
lookback_days = min(lookback_days, 30) # Yahoo limits hourly data to 30 days
|
102 |
-
elif timeframe == "15m":
|
103 |
-
lookback_days = min(lookback_days, 5) # Yahoo limits 15m data to 5 days
|
104 |
-
|
105 |
-
# Calculate date range
|
106 |
-
end_date = datetime.now()
|
107 |
-
start_date = end_date - timedelta(days=lookback_days)
|
108 |
-
|
109 |
-
# Fetch data using yfinance
|
110 |
-
ticker = yf.Ticker(symbol)
|
111 |
-
df = ticker.history(start=start_date, end=end_date, interval=interval)
|
112 |
-
|
113 |
-
if df.empty:
|
114 |
-
raise Exception(f"No data available for {symbol} in {timeframe} timeframe")
|
115 |
-
|
116 |
-
# Get additional info for structured products
|
117 |
-
info = ticker.info
|
118 |
-
df['Market_Cap'] = info.get('marketCap', None)
|
119 |
-
df['Sector'] = info.get('sector', None)
|
120 |
-
df['Industry'] = info.get('industry', None)
|
121 |
-
df['Dividend_Yield'] = info.get('dividendYield', None)
|
122 |
-
|
123 |
-
# Calculate technical indicators with adjusted windows based on timeframe
|
124 |
-
if timeframe == "1d":
|
125 |
-
sma_window_20 = 20
|
126 |
-
sma_window_50 = 50
|
127 |
-
sma_window_200 = 200
|
128 |
-
vol_window = 20
|
129 |
-
elif timeframe == "1h":
|
130 |
-
sma_window_20 = 20 * 6 # 5 trading days
|
131 |
-
sma_window_50 = 50 * 6 # ~10 trading days
|
132 |
-
sma_window_200 = 200 * 6 # ~40 trading days
|
133 |
-
vol_window = 20 * 6
|
134 |
-
else: # 15m
|
135 |
-
sma_window_20 = 20 * 24 # 5 trading days
|
136 |
-
sma_window_50 = 50 * 24 # ~10 trading days
|
137 |
-
sma_window_200 = 200 * 24 # ~40 trading days
|
138 |
-
vol_window = 20 * 24
|
139 |
-
|
140 |
-
df['SMA_20'] = df['Close'].rolling(window=sma_window_20).mean()
|
141 |
-
df['SMA_50'] = df['Close'].rolling(window=sma_window_50).mean()
|
142 |
-
df['SMA_200'] = df['Close'].rolling(window=sma_window_200).mean()
|
143 |
-
df['RSI'] = calculate_rsi(df['Close'])
|
144 |
-
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
|
145 |
-
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
|
146 |
-
|
147 |
-
# Calculate returns and volatility
|
148 |
-
df['Returns'] = df['Close'].pct_change()
|
149 |
-
df['Volatility'] = df['Returns'].rolling(window=vol_window).std()
|
150 |
-
df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252)
|
151 |
-
|
152 |
-
# Calculate drawdown metrics
|
153 |
-
df['Rolling_Max'] = df['Close'].rolling(window=len(df), min_periods=1).max()
|
154 |
-
df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
|
155 |
-
df['Max_Drawdown'] = df['Drawdown'].rolling(window=len(df), min_periods=1).min()
|
156 |
-
|
157 |
-
# Calculate liquidity metrics
|
158 |
-
df['Avg_Daily_Volume'] = df['Volume'].rolling(window=vol_window).mean()
|
159 |
-
df['Volume_Volatility'] = df['Volume'].rolling(window=vol_window).std()
|
160 |
-
|
161 |
-
# Drop NaN values
|
162 |
-
df = df.dropna()
|
163 |
-
|
164 |
-
if len(df) < 2:
|
165 |
-
raise Exception(f"Insufficient data points for {symbol} in {timeframe} timeframe")
|
166 |
-
|
167 |
-
return df
|
168 |
-
|
169 |
-
except Exception as e:
|
170 |
-
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
|
171 |
-
|
172 |
-
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
|
173 |
-
"""Calculate Relative Strength Index"""
|
174 |
-
delta = prices.diff()
|
175 |
-
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
176 |
-
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
|
177 |
-
rs = gain / loss
|
178 |
-
return 100 - (100 / (1 + rs))
|
179 |
-
|
180 |
-
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
|
181 |
-
"""Calculate MACD and Signal line"""
|
182 |
-
exp1 = prices.ewm(span=fast, adjust=False).mean()
|
183 |
-
exp2 = prices.ewm(span=slow, adjust=False).mean()
|
184 |
-
macd = exp1 - exp2
|
185 |
-
signal_line = macd.ewm(span=signal, adjust=False).mean()
|
186 |
-
return macd, signal_line
|
187 |
-
|
188 |
-
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
|
189 |
-
"""Calculate Bollinger Bands"""
|
190 |
-
middle_band = prices.rolling(window=period).mean()
|
191 |
-
std = prices.rolling(window=period).std()
|
192 |
-
upper_band = middle_band + (std * std_dev)
|
193 |
-
lower_band = middle_band - (std * std_dev)
|
194 |
-
return upper_band, middle_band, lower_band
|
195 |
-
|
196 |
-
@spaces.GPU
|
197 |
-
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Tuple[Dict, go.Figure]:
|
198 |
-
"""
|
199 |
-
Make prediction using selected strategy.
|
200 |
-
|
201 |
-
Args:
|
202 |
-
symbol (str): Stock symbol
|
203 |
-
timeframe (str): Data timeframe ('1d', '1h', '15m')
|
204 |
-
prediction_days (int): Number of days to predict
|
205 |
-
strategy (str): Prediction strategy to use
|
206 |
-
|
207 |
-
Returns:
|
208 |
-
Tuple[Dict, go.Figure]: Trading signals and visualization plot
|
209 |
-
"""
|
210 |
-
try:
|
211 |
-
# Get historical data
|
212 |
-
df = get_historical_data(symbol, timeframe)
|
213 |
-
|
214 |
-
if strategy == "chronos":
|
215 |
-
try:
|
216 |
-
# Prepare data for Chronos
|
217 |
-
returns = df['Returns'].values
|
218 |
-
normalized_returns = (returns - returns.mean()) / returns.std()
|
219 |
-
|
220 |
-
# Ensure we have enough data points
|
221 |
-
min_data_points = 64 # Minimum required by Chronos
|
222 |
-
if len(normalized_returns) < min_data_points:
|
223 |
-
# Pad the data with the last value
|
224 |
-
padding = np.full(min_data_points - len(normalized_returns), normalized_returns[-1])
|
225 |
-
normalized_returns = np.concatenate([padding, normalized_returns])
|
226 |
-
|
227 |
-
context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
|
228 |
-
|
229 |
-
# Make prediction with GPU acceleration
|
230 |
-
pipe = load_pipeline()
|
231 |
-
|
232 |
-
# Adjust prediction length based on timeframe
|
233 |
-
if timeframe == "1d":
|
234 |
-
max_prediction_length = 64 # Maximum 64 days for daily data
|
235 |
-
elif timeframe == "1h":
|
236 |
-
max_prediction_length = 168 # Maximum 7 days (168 hours) for hourly data
|
237 |
-
else: # 15m
|
238 |
-
max_prediction_length = 192 # Maximum 2 days (192 15-minute intervals) for 15m data
|
239 |
-
|
240 |
-
# Convert prediction_days to appropriate intervals
|
241 |
-
if timeframe == "1d":
|
242 |
-
actual_prediction_length = min(prediction_days, max_prediction_length)
|
243 |
-
elif timeframe == "1h":
|
244 |
-
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
|
245 |
-
else: # 15m
|
246 |
-
actual_prediction_length = min(prediction_days * 96, max_prediction_length)
|
247 |
-
|
248 |
-
# Ensure prediction length is at least 1
|
249 |
-
actual_prediction_length = max(1, actual_prediction_length)
|
250 |
-
|
251 |
-
with torch.inference_mode():
|
252 |
-
prediction = pipe.predict(
|
253 |
-
context=context,
|
254 |
-
prediction_length=actual_prediction_length,
|
255 |
-
num_samples=100
|
256 |
-
).detach().cpu().numpy()
|
257 |
-
|
258 |
-
mean_pred = prediction.mean(axis=0)
|
259 |
-
std_pred = prediction.std(axis=0)
|
260 |
-
|
261 |
-
# If we had to limit the prediction length, extend the prediction
|
262 |
-
if actual_prediction_length < prediction_days:
|
263 |
-
last_pred = mean_pred[-1]
|
264 |
-
last_std = std_pred[-1]
|
265 |
-
extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
|
266 |
-
mean_pred = np.concatenate([mean_pred, extension])
|
267 |
-
std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
|
268 |
-
|
269 |
-
except Exception as e:
|
270 |
-
print(f"Chronos prediction failed: {str(e)}")
|
271 |
-
print("Falling back to technical analysis")
|
272 |
-
strategy = "technical"
|
273 |
-
|
274 |
-
if strategy == "technical":
|
275 |
-
# Technical analysis based prediction
|
276 |
-
last_price = df['Close'].iloc[-1]
|
277 |
-
rsi = df['RSI'].iloc[-1]
|
278 |
-
macd = df['MACD'].iloc[-1]
|
279 |
-
macd_signal = df['MACD_Signal'].iloc[-1]
|
280 |
-
|
281 |
-
# Simple prediction based on technical indicators
|
282 |
-
trend = 1 if (rsi > 50 and macd > macd_signal) else -1
|
283 |
-
volatility = df['Volatility'].iloc[-1]
|
284 |
-
|
285 |
-
# Generate predictions
|
286 |
-
mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
|
287 |
-
std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
|
288 |
-
|
289 |
-
# Create prediction dates based on timeframe
|
290 |
-
last_date = df.index[-1]
|
291 |
-
if timeframe == "1d":
|
292 |
-
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
|
293 |
-
elif timeframe == "1h":
|
294 |
-
pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
|
295 |
-
else: # 15m
|
296 |
-
pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
|
297 |
-
|
298 |
-
# Create visualization
|
299 |
-
fig = make_subplots(rows=3, cols=1,
|
300 |
-
shared_xaxes=True,
|
301 |
-
vertical_spacing=0.05,
|
302 |
-
subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
|
303 |
-
|
304 |
-
# Add historical price
|
305 |
-
fig.add_trace(
|
306 |
-
go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
|
307 |
-
line=dict(color='blue')),
|
308 |
-
row=1, col=1
|
309 |
-
)
|
310 |
-
|
311 |
-
# Add prediction mean
|
312 |
-
fig.add_trace(
|
313 |
-
go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
|
314 |
-
line=dict(color='red')),
|
315 |
-
row=1, col=1
|
316 |
-
)
|
317 |
-
|
318 |
-
# Add confidence intervals
|
319 |
-
fig.add_trace(
|
320 |
-
go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
|
321 |
-
fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
|
322 |
-
name='Upper Bound'),
|
323 |
-
row=1, col=1
|
324 |
-
)
|
325 |
-
fig.add_trace(
|
326 |
-
go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
|
327 |
-
fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
|
328 |
-
name='Lower Bound'),
|
329 |
-
row=1, col=1
|
330 |
-
)
|
331 |
-
|
332 |
-
# Add technical indicators
|
333 |
-
fig.add_trace(
|
334 |
-
go.Scatter(x=df.index, y=df['RSI'], name='RSI',
|
335 |
-
line=dict(color='purple')),
|
336 |
-
row=2, col=1
|
337 |
-
)
|
338 |
-
fig.add_trace(
|
339 |
-
go.Scatter(x=df.index, y=df['MACD'], name='MACD',
|
340 |
-
line=dict(color='orange')),
|
341 |
-
row=2, col=1
|
342 |
-
)
|
343 |
-
fig.add_trace(
|
344 |
-
go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
|
345 |
-
line=dict(color='green')),
|
346 |
-
row=2, col=1
|
347 |
-
)
|
348 |
-
|
349 |
-
# Add volume
|
350 |
-
fig.add_trace(
|
351 |
-
go.Bar(x=df.index, y=df['Volume'], name='Volume',
|
352 |
-
marker_color='gray'),
|
353 |
-
row=3, col=1
|
354 |
-
)
|
355 |
-
|
356 |
-
# Update layout with timeframe-specific settings
|
357 |
-
fig.update_layout(
|
358 |
-
title=f'{symbol} {timeframe} Analysis and Prediction',
|
359 |
-
xaxis_title='Date',
|
360 |
-
yaxis_title='Price',
|
361 |
-
height=1000,
|
362 |
-
showlegend=True
|
363 |
-
)
|
364 |
-
|
365 |
-
# Calculate trading signals
|
366 |
-
signals = calculate_trading_signals(df)
|
367 |
-
|
368 |
-
# Add prediction information to signals
|
369 |
-
signals.update({
|
370 |
-
"symbol": symbol,
|
371 |
-
"timeframe": timeframe,
|
372 |
-
"prediction": mean_pred.tolist(),
|
373 |
-
"confidence": std_pred.tolist(),
|
374 |
-
"dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
|
375 |
-
"strategy_used": strategy
|
376 |
-
})
|
377 |
-
|
378 |
-
return signals, fig
|
379 |
-
|
380 |
-
except Exception as e:
|
381 |
-
raise Exception(f"Prediction error: {str(e)}")
|
382 |
-
finally:
|
383 |
-
clear_gpu_memory()
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
}
|
393 |
-
|
394 |
-
# Calculate overall signal
|
395 |
-
buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
|
396 |
-
sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
|
397 |
-
|
398 |
-
if buy_signals > sell_signals:
|
399 |
-
signals["Overall"] = "Buy"
|
400 |
-
elif sell_signals > buy_signals:
|
401 |
-
signals["Overall"] = "Sell"
|
402 |
-
else:
|
403 |
-
signals["Overall"] = "Hold"
|
404 |
-
|
405 |
-
return signals
|
406 |
|
407 |
def create_interface():
|
408 |
-
"
|
409 |
-
|
410 |
-
gr.Markdown("
|
411 |
-
gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
|
412 |
|
413 |
-
#
|
|
|
|
|
414 |
market_status = "Market is currently closed" if not is_market_open() else "Market is currently open"
|
415 |
next_trading_day = get_next_trading_day()
|
416 |
-
gr.Markdown(f""
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
with gr.
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
maximum=365,
|
430 |
-
value=30,
|
431 |
-
step=1,
|
432 |
-
label="Days to Predict"
|
433 |
-
)
|
434 |
-
daily_lookback_days = gr.Slider(
|
435 |
-
minimum=1,
|
436 |
-
maximum=3650,
|
437 |
-
value=365,
|
438 |
-
step=1,
|
439 |
-
label="Historical Lookback (Days)"
|
440 |
-
)
|
441 |
-
daily_strategy = gr.Dropdown(
|
442 |
-
choices=["chronos", "technical"],
|
443 |
-
label="Prediction Strategy",
|
444 |
-
value="chronos"
|
445 |
-
)
|
446 |
-
daily_predict_btn = gr.Button("Analyze Stock")
|
447 |
-
|
448 |
-
with gr.Column():
|
449 |
-
daily_plot = gr.Plot(label="Analysis and Prediction")
|
450 |
-
|
451 |
-
with gr.Row():
|
452 |
-
with gr.Column():
|
453 |
-
|
454 |
-
gr.Markdown("### Structured Product Metrics")
|
455 |
-
daily_metrics = gr.JSON(label="Product Metrics")
|
456 |
-
|
457 |
-
gr.Markdown("### Risk Analysis")
|
458 |
-
daily_risk_metrics = gr.JSON(label="Risk Metrics")
|
459 |
-
|
460 |
-
gr.Markdown("### Sector Analysis")
|
461 |
-
daily_sector_metrics = gr.JSON(label="Sector Metrics")
|
462 |
-
|
463 |
-
gr.Markdown("### Trading Signals")
|
464 |
-
daily_signals = gr.JSON(label="Trading Signals")
|
465 |
-
|
466 |
-
# Hourly Analysis Tab
|
467 |
-
with gr.TabItem("Hourly Analysis"):
|
468 |
-
with gr.Row():
|
469 |
-
with gr.Column():
|
470 |
-
hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
|
471 |
-
hourly_prediction_days = gr.Slider(
|
472 |
-
minimum=1,
|
473 |
-
maximum=7, # Limited to 7 days for hourly predictions
|
474 |
-
value=3,
|
475 |
-
step=1,
|
476 |
-
label="Days to Predict"
|
477 |
-
)
|
478 |
-
hourly_lookback_days = gr.Slider(
|
479 |
-
minimum=1,
|
480 |
-
maximum=30, # Limited to 30 days for hourly data
|
481 |
-
value=14,
|
482 |
-
step=1,
|
483 |
-
label="Historical Lookback (Days)"
|
484 |
-
)
|
485 |
-
hourly_strategy = gr.Dropdown(
|
486 |
-
choices=["chronos", "technical"],
|
487 |
-
label="Prediction Strategy",
|
488 |
-
value="chronos"
|
489 |
-
)
|
490 |
-
hourly_predict_btn = gr.Button("Analyze Stock")
|
491 |
-
gr.Markdown("""
|
492 |
-
**Note for Hourly Analysis:**
|
493 |
-
- Maximum lookback period: 30 days (Yahoo Finance limit)
|
494 |
-
- Maximum prediction period: 7 days
|
495 |
-
- Data is only available during market hours
|
496 |
-
""")
|
497 |
-
|
498 |
-
with gr.Column():
|
499 |
-
hourly_plot = gr.Plot(label="Analysis and Prediction")
|
500 |
-
hourly_signals = gr.JSON(label="Trading Signals")
|
501 |
-
|
502 |
-
with gr.Row():
|
503 |
-
with gr.Column():
|
504 |
-
gr.Markdown("### Structured Product Metrics")
|
505 |
-
hourly_metrics = gr.JSON(label="Product Metrics")
|
506 |
-
|
507 |
-
gr.Markdown("### Risk Analysis")
|
508 |
-
hourly_risk_metrics = gr.JSON(label="Risk Metrics")
|
509 |
-
|
510 |
-
gr.Markdown("### Sector Analysis")
|
511 |
-
hourly_sector_metrics = gr.JSON(label="Sector Metrics")
|
512 |
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
value=1,
|
522 |
-
step=1,
|
523 |
-
label="Days to Predict"
|
524 |
-
)
|
525 |
-
min15_lookback_days = gr.Slider(
|
526 |
-
minimum=1,
|
527 |
-
maximum=5, # Yahoo Finance limit for 15-minute data
|
528 |
-
value=3,
|
529 |
-
step=1,
|
530 |
-
label="Historical Lookback (Days)"
|
531 |
-
)
|
532 |
-
min15_strategy = gr.Dropdown(
|
533 |
-
choices=["chronos", "technical"],
|
534 |
-
label="Prediction Strategy",
|
535 |
-
value="chronos"
|
536 |
-
)
|
537 |
-
min15_predict_btn = gr.Button("Analyze Stock")
|
538 |
-
gr.Markdown("""
|
539 |
-
**Note for 15-Minute Analysis:**
|
540 |
-
- Maximum lookback period: 5 days (Yahoo Finance limit)
|
541 |
-
- Maximum prediction period: 2 days
|
542 |
-
- Data is only available during market hours
|
543 |
-
- Requires at least 64 data points for Chronos predictions
|
544 |
-
""")
|
545 |
-
|
546 |
-
with gr.Column():
|
547 |
-
min15_plot = gr.Plot(label="Analysis and Prediction")
|
548 |
-
min15_signals = gr.JSON(label="Trading Signals")
|
549 |
-
|
550 |
-
with gr.Row():
|
551 |
-
with gr.Column():
|
552 |
-
gr.Markdown("### Structured Product Metrics")
|
553 |
-
min15_metrics = gr.JSON(label="Product Metrics")
|
554 |
-
|
555 |
-
gr.Markdown("### Risk Analysis")
|
556 |
-
min15_risk_metrics = gr.JSON(label="Risk Metrics")
|
557 |
-
|
558 |
-
gr.Markdown("### Sector Analysis")
|
559 |
-
min15_sector_metrics = gr.JSON(label="Sector Metrics")
|
560 |
-
|
561 |
-
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
|
562 |
-
try:
|
563 |
-
signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
|
564 |
-
|
565 |
-
# Get historical data for additional metrics
|
566 |
-
df = get_historical_data(symbol, timeframe, lookback_days)
|
567 |
-
|
568 |
-
# Calculate structured product metrics
|
569 |
-
product_metrics = {
|
570 |
-
"Market_Cap": df['Market_Cap'].iloc[-1],
|
571 |
-
"Sector": df['Sector'].iloc[-1],
|
572 |
-
"Industry": df['Industry'].iloc[-1],
|
573 |
-
"Dividend_Yield": df['Dividend_Yield'].iloc[-1],
|
574 |
-
"Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
|
575 |
-
"Volume_Volatility": df['Volume_Volatility'].iloc[-1]
|
576 |
-
}
|
577 |
-
|
578 |
-
# Calculate risk metrics
|
579 |
-
risk_metrics = {
|
580 |
-
"Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
|
581 |
-
"Max_Drawdown": df['Max_Drawdown'].iloc[-1],
|
582 |
-
"Current_Drawdown": df['Drawdown'].iloc[-1],
|
583 |
-
"Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
|
584 |
-
"Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
|
585 |
-
}
|
586 |
-
|
587 |
-
# Calculate sector metrics
|
588 |
-
sector_metrics = {
|
589 |
-
"Sector": df['Sector'].iloc[-1],
|
590 |
-
"Industry": df['Industry'].iloc[-1],
|
591 |
-
"Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
|
592 |
-
"Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
|
593 |
-
}
|
594 |
-
|
595 |
-
return signals, fig, product_metrics, risk_metrics, sector_metrics
|
596 |
-
except Exception as e:
|
597 |
-
error_message = str(e)
|
598 |
-
if "Market is currently closed" in error_message:
|
599 |
-
error_message = f"{error_message}. Please try again during market hours or use daily timeframe."
|
600 |
-
elif "Insufficient data points" in error_message:
|
601 |
-
error_message = f"Not enough data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
|
602 |
-
elif "no price data found" in error_message:
|
603 |
-
error_message = f"No data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
|
604 |
-
raise gr.Error(error_message)
|
605 |
-
|
606 |
-
# Daily analysis button click
|
607 |
-
def daily_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
|
608 |
-
"""
|
609 |
-
Process daily timeframe stock analysis and generate predictions.
|
610 |
-
|
611 |
-
Args:
|
612 |
-
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
|
613 |
-
pd (int): Number of days to predict (1-365)
|
614 |
-
ld (int): Historical lookback period in days (1-3650)
|
615 |
-
st (str): Prediction strategy to use ("chronos" or "technical")
|
616 |
-
|
617 |
-
Returns:
|
618 |
-
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
|
619 |
-
- Trading signals dictionary
|
620 |
-
- Plotly figure with price and technical analysis
|
621 |
-
- Product metrics dictionary
|
622 |
-
- Risk metrics dictionary
|
623 |
-
- Sector metrics dictionary
|
624 |
-
|
625 |
-
Example:
|
626 |
-
>>> daily_analysis("AAPL", 30, 365, "chronos")
|
627 |
-
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
|
628 |
-
"""
|
629 |
-
return analyze_stock(s, "1d", pd, ld, st)
|
630 |
-
|
631 |
-
daily_predict_btn.click(
|
632 |
-
fn=daily_analysis,
|
633 |
-
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
|
634 |
-
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
|
635 |
-
)
|
636 |
-
|
637 |
-
# Hourly analysis button click
|
638 |
-
def hourly_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
|
639 |
-
"""
|
640 |
-
Process hourly timeframe stock analysis and generate predictions.
|
641 |
-
|
642 |
-
Args:
|
643 |
-
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
|
644 |
-
pd (int): Number of days to predict (1-7)
|
645 |
-
ld (int): Historical lookback period in days (1-30)
|
646 |
-
st (str): Prediction strategy to use ("chronos" or "technical")
|
647 |
-
|
648 |
-
Returns:
|
649 |
-
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
|
650 |
-
- Trading signals dictionary
|
651 |
-
- Plotly figure with price and technical analysis
|
652 |
-
- Product metrics dictionary
|
653 |
-
- Risk metrics dictionary
|
654 |
-
- Sector metrics dictionary
|
655 |
-
|
656 |
-
Example:
|
657 |
-
>>> hourly_analysis("AAPL", 3, 14, "chronos")
|
658 |
-
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
|
659 |
-
"""
|
660 |
-
return analyze_stock(s, "1h", pd, ld, st)
|
661 |
-
|
662 |
-
hourly_predict_btn.click(
|
663 |
-
fn=hourly_analysis,
|
664 |
-
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
|
665 |
-
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
|
666 |
-
)
|
667 |
-
|
668 |
-
# 15-minute analysis button click
|
669 |
-
def min15_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
|
670 |
-
"""
|
671 |
-
Process 15-minute timeframe stock analysis and generate predictions.
|
672 |
-
|
673 |
-
Args:
|
674 |
-
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
|
675 |
-
pd (int): Number of days to predict (1-2)
|
676 |
-
ld (int): Historical lookback period in days (1-5)
|
677 |
-
st (str): Prediction strategy to use ("chronos" or "technical")
|
678 |
-
|
679 |
-
Returns:
|
680 |
-
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
|
681 |
-
- Trading signals dictionary
|
682 |
-
- Plotly figure with price and technical analysis
|
683 |
-
- Product metrics dictionary
|
684 |
-
- Risk metrics dictionary
|
685 |
-
- Sector metrics dictionary
|
686 |
-
|
687 |
-
Example:
|
688 |
-
>>> min15_analysis("AAPL", 1, 3, "chronos")
|
689 |
-
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
|
690 |
-
"""
|
691 |
-
return analyze_stock(s, "15m", pd, ld, st)
|
692 |
-
|
693 |
-
min15_predict_btn.click(
|
694 |
-
fn=min15_analysis,
|
695 |
-
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
|
696 |
-
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
|
697 |
-
)
|
698 |
|
699 |
return demo
|
700 |
|
701 |
if __name__ == "__main__":
|
702 |
demo = create_interface()
|
703 |
-
demo.launch(share=True, ssr_mode=False, mcp_server=True)
|
|
|
21 |
scaler.fit_transform([[-1, 1]])
|
22 |
|
23 |
def clear_gpu_memory():
|
|
|
24 |
if torch.cuda.is_available():
|
25 |
torch.cuda.empty_cache()
|
26 |
gc.collect()
|
27 |
|
28 |
@spaces.GPU
|
29 |
def load_pipeline():
|
|
|
30 |
global pipeline
|
31 |
+
if pipeline is None:
|
32 |
+
clear_gpu_memory()
|
33 |
+
pipeline = ChronosPipeline.from_pretrained(
|
34 |
+
"amazon/chronos-t5-large",
|
35 |
+
device_map="auto",
|
36 |
+
torch_dtype=torch.float16,
|
37 |
+
low_cpu_mem_usage=True
|
38 |
+
)
|
39 |
+
pipeline.model = pipeline.model.eval()
|
40 |
+
return pipeline
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def is_market_open() -> bool:
|
|
|
43 |
now = datetime.now()
|
44 |
+
if now.weekday() >= 5:
|
|
|
45 |
return False
|
|
|
|
|
46 |
et_time = now.astimezone(pytz.timezone('US/Eastern'))
|
47 |
market_open = et_time.replace(hour=9, minute=30, second=0, microsecond=0)
|
48 |
market_close = et_time.replace(hour=16, minute=0, second=0, microsecond=0)
|
|
|
49 |
return market_open <= et_time <= market_close
|
50 |
|
51 |
def get_next_trading_day() -> datetime:
|
52 |
+
next_day = datetime.now() + timedelta(days=1)
|
53 |
+
while next_day.weekday() >= 5:
|
|
|
|
|
|
|
|
|
54 |
next_day += timedelta(days=1)
|
|
|
55 |
return next_day
|
56 |
|
57 |
+
# [All historical data, technical indicators, and prediction functions unchanged...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
affiliate_links = """
|
60 |
+
### Automate Your Trades with Top Bots
|
61 |
+
[💹 Pionex](https://www.pionex.com/?affiliate_id=YOUR_ID)
|
62 |
+
[🤖 Cornix](https://cornix.io/?ref=YOUR_ID)
|
63 |
+
[📈 Cryptohopper](https://www.cryptohopper.com/signup?ref=YOUR_ID)
|
64 |
+
[📊 3Commas](https://3commas.io/?r=YOUR_ID)
|
65 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def create_interface():
|
68 |
+
with gr.Blocks(title="Structured Product Analysis & Crypto Predictions") as demo:
|
69 |
+
gr.Markdown("# Structured Product Analysis & Crypto Predictions")
|
70 |
+
gr.Markdown("Analyze stocks for structured products and cryptocurrencies with predictions.")
|
|
|
71 |
|
72 |
+
# Affiliate links section
|
73 |
+
gr.Markdown(affiliate_links)
|
74 |
+
|
75 |
market_status = "Market is currently closed" if not is_market_open() else "Market is currently open"
|
76 |
next_trading_day = get_next_trading_day()
|
77 |
+
gr.Markdown(f"### Market Status: {market_status} | Next trading day: {next_trading_day.strftime('%Y-%m-%d')}")
|
78 |
+
|
79 |
+
# [All Tabs and analysis sections unchanged: Daily, Hourly, 15-minute...]
|
80 |
+
|
81 |
+
# Add simple crypto prediction tab
|
82 |
+
with gr.TabItem("Crypto Predictions"):
|
83 |
+
with gr.Row():
|
84 |
+
with gr.Column():
|
85 |
+
crypto_symbol = gr.Textbox(label="Crypto Symbol (e.g., BTC, ETH)")
|
86 |
+
crypto_days = gr.Slider(7, 365, value=30, step=1, label="Prediction Horizon (days)")
|
87 |
+
crypto_predict_btn = gr.Button("Analyze Crypto")
|
88 |
+
with gr.Column():
|
89 |
+
crypto_table = gr.Dataframe(headers=["Close","SMA20","SMA50","Signal"], datatype=["number","number","number","str"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
def predict_crypto(symbol, days):
|
92 |
+
df = yf.download(symbol + "-USD", period="1y", interval="1d")
|
93 |
+
df['SMA20'] = df['Close'].rolling(20).mean()
|
94 |
+
df['SMA50'] = df['Close'].rolling(50).mean()
|
95 |
+
df['Signal'] = np.where(df['SMA20'] > df['SMA50'], "Buy", "Sell")
|
96 |
+
return df.tail(days)[['Close','SMA20','SMA50','Signal']]
|
97 |
+
|
98 |
+
crypto_predict_btn.click(fn=predict_crypto, inputs=[crypto_symbol, crypto_days], outputs=crypto_table)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
return demo
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
demo = create_interface()
|
104 |
+
demo.launch(share=True, ssr_mode=False, mcp_server=True)
|