Spaces:
Sleeping
Sleeping
Update app.py
#1
by
Roberta2024
- opened
app.py
CHANGED
@@ -16,10 +16,26 @@ model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
|
|
16 |
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
dtype = torch.bfloat16
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def initialize(file_path, question):
|
22 |
try:
|
|
|
|
|
|
|
|
|
|
|
23 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
24 |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
|
25 |
not contained in the context, say "answer not available in context" \n\n
|
@@ -30,43 +46,86 @@ def initialize(file_path, question):
|
|
30 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
31 |
|
32 |
if os.path.exists(file_path):
|
|
|
33 |
pdf_loader = PyPDFLoader(file_path)
|
34 |
pages = pdf_loader.load_and_split()
|
|
|
|
|
|
|
|
|
35 |
context = "\n".join(str(page.page_content) for page in pages[:30])
|
|
|
|
|
36 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
37 |
-
stuff_answer = stuff_chain(
|
|
|
|
|
|
|
38 |
gemini_answer = stuff_answer['output_text']
|
39 |
|
40 |
# Use Mistral model for additional text generation
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return combined_output
|
49 |
else:
|
50 |
-
return "Error:
|
51 |
except Exception as e:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
input_file = gr.File(label="Upload PDF File")
|
56 |
-
input_question = gr.Textbox(label="Ask about the document")
|
57 |
-
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
|
58 |
|
|
|
59 |
def pdf_qa(file, question):
|
60 |
if file is None:
|
61 |
return "Please upload a PDF file first."
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
# Create Gradio Interface
|
65 |
-
gr.Interface(
|
66 |
fn=pdf_qa,
|
67 |
-
inputs=[
|
68 |
-
|
|
|
|
|
|
|
69 |
title="RAG Knowledge Retrieval using Gemini API and Mistral Model",
|
70 |
-
description="Upload a PDF file and ask questions about the content."
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
dtype = torch.bfloat16
|
19 |
+
|
20 |
+
# Improved model loading with error handling
|
21 |
+
try:
|
22 |
+
mistral_model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_path,
|
24 |
+
torch_dtype=dtype,
|
25 |
+
device_map=device
|
26 |
+
)
|
27 |
+
print(f"Mistral model loaded successfully on {device}")
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error loading Mistral model: {str(e)}")
|
30 |
+
mistral_model = None
|
31 |
|
32 |
def initialize(file_path, question):
|
33 |
try:
|
34 |
+
# Check if API key is set
|
35 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
36 |
+
if not api_key:
|
37 |
+
return "Error: GOOGLE_API_KEY environment variable is not set."
|
38 |
+
|
39 |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
40 |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
|
41 |
not contained in the context, say "answer not available in context" \n\n
|
|
|
46 |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
47 |
|
48 |
if os.path.exists(file_path):
|
49 |
+
# Load and process PDF
|
50 |
pdf_loader = PyPDFLoader(file_path)
|
51 |
pages = pdf_loader.load_and_split()
|
52 |
+
|
53 |
+
if not pages:
|
54 |
+
return "Error: The PDF file appears to be empty or could not be processed."
|
55 |
+
|
56 |
context = "\n".join(str(page.page_content) for page in pages[:30])
|
57 |
+
|
58 |
+
# Generate Gemini answer
|
59 |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
60 |
+
stuff_answer = stuff_chain(
|
61 |
+
{"input_documents": pages, "question": question, "context": context},
|
62 |
+
return_only_outputs=True
|
63 |
+
)
|
64 |
gemini_answer = stuff_answer['output_text']
|
65 |
|
66 |
# Use Mistral model for additional text generation
|
67 |
+
if mistral_model is not None:
|
68 |
+
mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:"
|
69 |
+
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
|
70 |
+
|
71 |
+
with torch.no_grad():
|
72 |
+
mistral_outputs = mistral_model.generate(
|
73 |
+
mistral_inputs,
|
74 |
+
max_length=200, # Increased max length
|
75 |
+
min_length=20, # Set min length
|
76 |
+
do_sample=True, # Enable sampling
|
77 |
+
top_p=0.95, # Top-p sampling
|
78 |
+
temperature=0.7 # Temperature for creativity
|
79 |
+
)
|
80 |
+
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
|
81 |
+
# Clean up the output to get just the follow-up question
|
82 |
+
if "Generate a follow-up question:" in mistral_output:
|
83 |
+
mistral_output = mistral_output.split("Generate a follow-up question:")[1].strip()
|
84 |
+
|
85 |
+
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
|
86 |
+
else:
|
87 |
+
combined_output = f"Gemini Answer: {gemini_answer}\n\n(Mistral model unavailable)"
|
88 |
+
|
89 |
return combined_output
|
90 |
else:
|
91 |
+
return f"Error: File not found at path '{file_path}'. Please ensure the PDF file is valid."
|
92 |
except Exception as e:
|
93 |
+
import traceback
|
94 |
+
error_details = traceback.format_exc()
|
95 |
+
return f"An error occurred: {str(e)}\n\nDetails: {error_details}"
|
|
|
|
|
|
|
96 |
|
97 |
+
# Define Gradio Interface with improved error handling
|
98 |
def pdf_qa(file, question):
|
99 |
if file is None:
|
100 |
return "Please upload a PDF file first."
|
101 |
+
|
102 |
+
if not question or question.strip() == "":
|
103 |
+
return "Please enter a question about the document."
|
104 |
+
|
105 |
+
try:
|
106 |
+
return initialize(file.name, question)
|
107 |
+
except Exception as e:
|
108 |
+
import traceback
|
109 |
+
error_details = traceback.format_exc()
|
110 |
+
return f"Error processing request: {str(e)}\n\nDetails: {error_details}"
|
111 |
|
112 |
+
# Create Gradio Interface with additional options
|
113 |
+
demo = gr.Interface(
|
114 |
fn=pdf_qa,
|
115 |
+
inputs=[
|
116 |
+
gr.File(label="Upload PDF File", file_types=[".pdf"]),
|
117 |
+
gr.Textbox(label="Ask about the document", placeholder="What is the main topic of this document?")
|
118 |
+
],
|
119 |
+
outputs=gr.Textbox(label="Answer - Combined Gemini and Mistral"),
|
120 |
title="RAG Knowledge Retrieval using Gemini API and Mistral Model",
|
121 |
+
description="Upload a PDF file and ask questions about the content. The system uses Gemini for answering and Mistral for generating follow-up questions.",
|
122 |
+
examples=[
|
123 |
+
[None, "What are the main findings in this document?"],
|
124 |
+
[None, "Summarize the key points discussed in this paper."]
|
125 |
+
],
|
126 |
+
allow_flagging="never"
|
127 |
+
)
|
128 |
+
|
129 |
+
# Launch the app with additional parameters
|
130 |
+
if __name__ == "__main__":
|
131 |
+
demo.launch(share=True, debug=True)
|