Files changed (1) hide show
  1. app.py +83 -24
app.py CHANGED
@@ -16,10 +16,26 @@ model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
16
  mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
17
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
18
  dtype = torch.bfloat16
19
- mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  def initialize(file_path, question):
22
  try:
 
 
 
 
 
23
  model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
24
  prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
25
  not contained in the context, say "answer not available in context" \n\n
@@ -30,43 +46,86 @@ def initialize(file_path, question):
30
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
31
 
32
  if os.path.exists(file_path):
 
33
  pdf_loader = PyPDFLoader(file_path)
34
  pages = pdf_loader.load_and_split()
 
 
 
 
35
  context = "\n".join(str(page.page_content) for page in pages[:30])
 
 
36
  stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
37
- stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
 
 
 
38
  gemini_answer = stuff_answer['output_text']
39
 
40
  # Use Mistral model for additional text generation
41
- mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:"
42
- mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
43
- with torch.no_grad():
44
- mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50)
45
- mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
46
-
47
- combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  return combined_output
49
  else:
50
- return "Error: Unable to process the document. Please ensure the PDF file is valid."
51
  except Exception as e:
52
- return f"An error occurred: {str(e)}"
53
-
54
- # Define Gradio Interface
55
- input_file = gr.File(label="Upload PDF File")
56
- input_question = gr.Textbox(label="Ask about the document")
57
- output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
58
 
 
59
  def pdf_qa(file, question):
60
  if file is None:
61
  return "Please upload a PDF file first."
62
- return initialize(file.name, question)
 
 
 
 
 
 
 
 
 
63
 
64
- # Create Gradio Interface
65
- gr.Interface(
66
  fn=pdf_qa,
67
- inputs=[input_file, input_question],
68
- outputs=output_text,
 
 
 
69
  title="RAG Knowledge Retrieval using Gemini API and Mistral Model",
70
- description="Upload a PDF file and ask questions about the content."
71
- ).launch()
72
- #
 
 
 
 
 
 
 
 
 
16
  mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
17
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
18
  dtype = torch.bfloat16
19
+
20
+ # Improved model loading with error handling
21
+ try:
22
+ mistral_model = AutoModelForCausalLM.from_pretrained(
23
+ model_path,
24
+ torch_dtype=dtype,
25
+ device_map=device
26
+ )
27
+ print(f"Mistral model loaded successfully on {device}")
28
+ except Exception as e:
29
+ print(f"Error loading Mistral model: {str(e)}")
30
+ mistral_model = None
31
 
32
  def initialize(file_path, question):
33
  try:
34
+ # Check if API key is set
35
+ api_key = os.getenv("GOOGLE_API_KEY")
36
+ if not api_key:
37
+ return "Error: GOOGLE_API_KEY environment variable is not set."
38
+
39
  model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
40
  prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
41
  not contained in the context, say "answer not available in context" \n\n
 
46
  prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
47
 
48
  if os.path.exists(file_path):
49
+ # Load and process PDF
50
  pdf_loader = PyPDFLoader(file_path)
51
  pages = pdf_loader.load_and_split()
52
+
53
+ if not pages:
54
+ return "Error: The PDF file appears to be empty or could not be processed."
55
+
56
  context = "\n".join(str(page.page_content) for page in pages[:30])
57
+
58
+ # Generate Gemini answer
59
  stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
60
+ stuff_answer = stuff_chain(
61
+ {"input_documents": pages, "question": question, "context": context},
62
+ return_only_outputs=True
63
+ )
64
  gemini_answer = stuff_answer['output_text']
65
 
66
  # Use Mistral model for additional text generation
67
+ if mistral_model is not None:
68
+ mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:"
69
+ mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
70
+
71
+ with torch.no_grad():
72
+ mistral_outputs = mistral_model.generate(
73
+ mistral_inputs,
74
+ max_length=200, # Increased max length
75
+ min_length=20, # Set min length
76
+ do_sample=True, # Enable sampling
77
+ top_p=0.95, # Top-p sampling
78
+ temperature=0.7 # Temperature for creativity
79
+ )
80
+ mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
81
+ # Clean up the output to get just the follow-up question
82
+ if "Generate a follow-up question:" in mistral_output:
83
+ mistral_output = mistral_output.split("Generate a follow-up question:")[1].strip()
84
+
85
+ combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
86
+ else:
87
+ combined_output = f"Gemini Answer: {gemini_answer}\n\n(Mistral model unavailable)"
88
+
89
  return combined_output
90
  else:
91
+ return f"Error: File not found at path '{file_path}'. Please ensure the PDF file is valid."
92
  except Exception as e:
93
+ import traceback
94
+ error_details = traceback.format_exc()
95
+ return f"An error occurred: {str(e)}\n\nDetails: {error_details}"
 
 
 
96
 
97
+ # Define Gradio Interface with improved error handling
98
  def pdf_qa(file, question):
99
  if file is None:
100
  return "Please upload a PDF file first."
101
+
102
+ if not question or question.strip() == "":
103
+ return "Please enter a question about the document."
104
+
105
+ try:
106
+ return initialize(file.name, question)
107
+ except Exception as e:
108
+ import traceback
109
+ error_details = traceback.format_exc()
110
+ return f"Error processing request: {str(e)}\n\nDetails: {error_details}"
111
 
112
+ # Create Gradio Interface with additional options
113
+ demo = gr.Interface(
114
  fn=pdf_qa,
115
+ inputs=[
116
+ gr.File(label="Upload PDF File", file_types=[".pdf"]),
117
+ gr.Textbox(label="Ask about the document", placeholder="What is the main topic of this document?")
118
+ ],
119
+ outputs=gr.Textbox(label="Answer - Combined Gemini and Mistral"),
120
  title="RAG Knowledge Retrieval using Gemini API and Mistral Model",
121
+ description="Upload a PDF file and ask questions about the content. The system uses Gemini for answering and Mistral for generating follow-up questions.",
122
+ examples=[
123
+ [None, "What are the main findings in this document?"],
124
+ [None, "Summarize the key points discussed in this paper."]
125
+ ],
126
+ allow_flagging="never"
127
+ )
128
+
129
+ # Launch the app with additional parameters
130
+ if __name__ == "__main__":
131
+ demo.launch(share=True, debug=True)