NLP_streamlit / app.py
Roberta2024's picture
Create app.py
7b6709f verified
# -*- coding: utf-8 -*-
"""keyword_extraction"""
import requests
import jieba
from keybert import KeyBERT
from sklearn.feature_extraction.text import CountVectorizer
import streamlit as st
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 下載字體
def download_font(url, save_path):
response = requests.get(url)
with open(save_path, 'wb') as f:
f.write(response.content)
# 字體URL和保存路徑
font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download'
font_path = 'TaipeiSansTCBeta-Regular.ttf'
# 下載字體
download_font(font_url, font_path)
# 設置字體
font_prop = FontProperties(fname=font_path)
# 讀取繁體中文詞典
# jieba.set_dictionary('path_to_your_dict.txt') # 繁體中文詞典的實際路徑,若需要繁體字典請取消註解並設置正確路徑
# 2. 定義斷詞函數
def jieba_tokenizer(text):
return jieba.lcut(text)
# 3. 初始化CountVectorizer並定義KeyBERT模型
vectorizer = CountVectorizer(tokenizer=jieba_tokenizer)
kw_model = KeyBERT()
# 4. 提取關鍵詞的函數
def extract_keywords(doc):
keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer)
return keywords
# 5. 畫圖函數
def plot_keywords(keywords, title):
words = [kw[0] for kw in keywords]
scores = [kw[1] for kw in keywords]
plt.figure(figsize=(10, 6))
plt.barh(words, scores, color='skyblue')
plt.xlabel('分數', fontproperties=font_prop)
plt.title(title, fontproperties=font_prop)
plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面
plt.xticks(fontproperties=font_prop)
plt.yticks(fontproperties=font_prop)
st.pyplot(plt)
# 6. 建立Streamlit網頁應用程式
st.title("中文關鍵詞提取工具")
doc = st.text_area("請輸入文章:")
if st.button("提取關鍵詞"):
if doc:
keywords = extract_keywords(doc)
st.write("關鍵詞提取結果:")
for keyword in keywords:
st.write(f"{keyword[0]}: {keyword[1]:.4f}")
plot_keywords(keywords, "關鍵詞提取結果")
# 使用另一個模型進行關鍵詞提取
kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1')
keywords_multilingual = kw_model_multilingual.extract_keywords(doc, vectorizer=vectorizer)
st.write("多語言模型關鍵詞提取結果:")
for keyword in keywords_multilingual:
st.write(f"{keyword[0]}: {keyword[1]:.4f}")
plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果")
else:
st.write("請輸入文章內容以進行關鍵詞提取。")